AoPS Community

Federal Competition For Advanced Students, Part 12004

www.artofproblemsolving.com/community/c3776
by Amir Hossein

1 Find all quadruples (a, b, c, d) of real numbers such that

$$
a+b c d=b+c d a=c+d a b=d+a b c .
$$

2 A convex hexagon $A B C D E F$ with $A B=B C=a, C D=D E=b, E F=F A=c$ is inscribed in a circle. Show that this hexagon has three (pairwise disjoint) pairs of mutually perpendicular diagonals.

3 For natural numbers a, b, define $Z(a, b)=\frac{(3 a)!\cdot(4 b)!}{a!^{4} \cdot b!^{3}}$.
(a) Prove that $Z(a, b)$ is an integer for $a \leq b$.
(b) Prove that for each natural number b there are infinitely many natural numbers a such that $Z(a, b)$ is not an integer.

4 Each of the $2 N=2004$ real numbers $x_{1}, x_{2}, \ldots, x_{2004}$ equals either $\sqrt{2}-1$ or $\sqrt{2}+1$. Can the sum $\sum_{k=1}^{N} x_{2 k-1} x_{2} k$ take the value 2004? Which integral values can this sum take?

