AoPS Community

Federal Competition For Advanced Students, Part 12006

www.artofproblemsolving.com/community/c3778
by valerie, FelixD

1 Let n be a non-negative integer, which ends written in decimal notation on exactly k zeros, but which is bigger than 10^{k}.
For a n is only $k=k(n) \geq 2$ known. In how many different ways (as a function of $k=k(n) \geq 2$) can n be written as difference of two squares of non-negative integers at least?

2 Show that the sequence $a_{n}=\frac{(n+1)^{n} n^{2-n}}{7 n^{2}+1}$ is strictly monotonically increasing, where $n=$ $0,1,2, \ldots$.

3 In the triangle $A B C$ let D and E be the boundary points of the incircle with the sides $B C$ and $A C$. Show that if $A D=B E$ holds, then the triangle is isoceles.

4 Given is the function $f=\left\lfloor x^{2}\right\rfloor+\{x\}$ for all positive reals x. ($\lfloor x\rfloor$ denotes the largest integer less than or equal x and $\{x\}=x-\lfloor x\rfloor$.)
Show that there exists an arithmetic sequence of different positive rational numbers, which all have the denominator 3 , if they are a reduced fraction, and dont lie in the range of the function f.

