AoPS Community

Federal Competition For Advanced Students, Part 12007

www.artofproblemsolving.com/community/c3779
by valerie, FelixD

1 In a quadratic table with 2007 rows and 2007 columns is an odd number written in each field. For $1 \leq i \leq 2007$ is Z_{i} the sum of the numbers in the i-th row and for $1 \leq j \leq 2007$ is S_{j} the sum of the numbers in the j-th column. A is the product of all Z_{i} and B the product of all S_{j}. Show that $A+B \neq 0$

2 For every positive integer n determine the highest value $C(n)$, such that for every n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of pairwise distinct integers
$(n+1) \sum_{j=1}^{n} a_{j}^{2}-\left(\sum_{j=1}^{n} a_{j}\right)^{2} \geq C(n)$
3 Let $M(n)=\{-1,-2, \ldots,-n\}$. For every non-empty subset of $M(n)$ we consider the product of its elements. How big is the sum over all these products?

4 Let $n>4$ be a non-negative integer. Given is the in a circle inscribed convex n-gon $A_{0} A_{1} A_{2} \ldots A_{n-1} A_{n}$ ($A_{n}=A_{0}$) where the side $A_{i-1} A_{i}=i$ (for $1 \leq i \leq n$). Moreover, let ϕ_{i} be the angle between the line $A_{i} A_{i+1}$ and the tangent to the circle in the point A_{i} (where the angle ϕ_{i} is less than or equal 90°, i.e. ϕ_{i} is always the smaller angle of the two angles between the two lines). Determine the sum $\Phi=\sum_{i=0}^{n-1} \phi_{i}$ of these n angles.

