

AoPS Community 2007 Federal Competition For Advanced Students, Part 1

Federal Competition For Advanced Students, Part 1 2007

www.artofproblemsolving.com/community/c3779 by valerie, FelixD

- 1 In a quadratic table with 2007 rows and 2007 columns is an odd number written in each field. For $1 \le i \le 2007$ is Z_i the sum of the numbers in the *i*-th row and for $1 \le j \le 2007$ is S_j the sum of the numbers in the *j*-th column. *A* is the product of all Z_i and *B* the product of all S_j . Show that $A + B \ne 0$
- **2** For every positive integer *n* determine the highest value C(n), such that for every *n*-tuple (a_1, a_2, \ldots, a_n) of pairwise distinct integers $(n+1)\sum_{j=1}^n a_j^2 \left(\sum_{j=1}^n a_j\right)^2 \ge C(n)$
- **3** Let $M(n) = \{-1, -2, ..., -n\}$. For every non-empty subset of M(n) we consider the product of its elements. How big is the sum over all these products?
- 4 Let n > 4 be a non-negative integer. Given is the in a circle inscribed convex n-gon $A_0A_1A_2...A_{n-1}A_n$ $(A_n = A_0)$ where the side $A_{i-1}A_i = i$ (for $1 \le i \le n$). Moreover, let ϕ_i be the angle between the line A_iA_{i+1} and the tangent to the circle in the point A_i (where the angle ϕ_i is less than or equal 90^o , i.e. ϕ_i is always the smaller angle of the two angles between the two lines). Determine the sum $\Phi = \sum_{i=0}^{n-1} \phi_i$ of these n angles.

