AoPS Community

Federal Competition For Advanced Students, Part 12011

www.artofproblemsolving.com/community/c3781
by Martin N .

1 Determine all integer triplets (x, y, z) such that

$$
x^{4}+x^{2}=7^{z} y^{2} .
$$

2 For a positive integer k and real numbers x and y, let

$$
f_{k}(x, y)=(x+y)-\left(x^{2 k+1}+y^{2 k+1}\right) .
$$

If $x^{2}+y^{2}=1$, then determine the maximal possible value c_{k} of $f_{k}(x, y)$.
3 A set of three elements is called arithmetic if one of its elements is the arithmetic mean of the other two. Likewise, a set of three elements is called harmonic if one of its elements is the harmonic mean of the other two.

How many three-element subsets of the set of integers $\{z \in \mathbb{Z} \mid-2011<z<2011\}$ are arithmetic and harmonic?
(Remark: The arithmetic mean $A(a, b)$ and the harmonic mean $H(a, b)$ are defined as

$$
A(a, b)=\frac{a+b}{2} \quad \text { and } \quad H(a, b)=\frac{2 a b}{a+b}=\frac{2}{\frac{1}{a}+\frac{1}{b}},
$$

respectively, where $H(a, b)$ is not defined for some a, b.)
4 Inside or on the faces of a tetrahedron with five edges of length 2 and one edge of lenght 1 , there is a point P having distances a, b, c, d to the four faces of the tetrahedron. Determine the locus of all points P such that $a+b+c+d$ is minimal and the locus of all points P such that $a+b+c+d$ is maximal.

