AoPS Community

Federal Competition For Advanced Students, Part 12013

www.artofproblemsolving.com/community/c3783
by Martin N.

1 Show that if for non-negative integers m, n, N, k the equation

$$
\left(n^{2}+1\right)^{2^{k}} \cdot\left(44 n^{3}+11 n^{2}+10 n+2\right)=N^{m}
$$

holds, then $m=1$.
2 Solve the following system of equations in rational numbers:

$$
\left(x^{2}+1\right)^{3}=y+1,\left(y^{2}+1\right)^{3}=z+1,\left(z^{2}+1\right)^{3}=x+1 .
$$

3 Arrange the positive integers into two lines as follows:

We start with writing 1 in the upper line, 2 in the lower line and 3 again in the upper line. Afterwards, we alternately write one single integer in the upper line and a block of integers in the lower line. The number of consecutive integers in a block is determined by the first number in the previous block.
Let $a_{1}, a_{2}, a_{3}, \ldots$ be the numbers in the upper line. Give an explicit formula for a_{n}.
4 Let A, B and C be three points on a line (in this order).
For each circle k through the points B and C, let D be one point of intersection of the perpendicular bisector of $B C$ with the circle k. Further, let E be the second point of intersection of the line $A D$ with k.
Show that for each circle k, the ratio of lengths $\overline{B E}: \overline{C E}$ is the same.

