Art of Problem Solving

## AoPS Community

## Ukraine Team Selection Test 2008

www.artofproblemsolving.com/community/c3785
by delegat, April, Yulia, the.sceth, orl

1 Denote by $M$ midpoint of side $B C$ in an isosceles triangle $\triangle A B C$ with $A C=A B$. Take a point $X$ on a smaller arc MA of circumcircle of triangle $\triangle A B M$. Denote by $T$ point inside of angle $B M A$ such that $\angle T M X=90$ and $T X=B X$.

Prove that $\angle M T B-\angle C T M$ does not depend on choice of $X$.
Author: Farzan Barekat, Canada
2 There is a row that consists of digits from 0 to 9 and Ukrainian letters (there are 33 of them) with following properties: there arent two distinct digits or letters $a_{i}, a_{j}$ such that $a_{i}>a_{j}$ and $i<j$ (if $a_{i}, a_{j}$ are letters $a_{i}>a_{j}$ means that $a_{i}$ has greater then $a_{j}$ position in alphabet) and there arent two equal consecutive symbols or two equal symbols having exactly one symbol between them. Find the greatest possible number of symbols in such row.

3 For positive $a, b, c, d$ prove that $(a+b)(b+c)(c+d)(d+a)(1+\sqrt[4]{a b c d})^{4} \geq 16 a b c d(1+a)(1+$ b) $(1+c)(1+d)$

4 Two circles $\omega_{1}$ and $\omega_{2}$ tangents internally in point $P$. On their common tangent points $A, B$ are chosen such that $P$ lies between $A$ and $B$. Let $C$ and $D$ be the intersection points of tangent from $A$ to $\omega_{1}$, tangent from $B$ to $\omega_{2}$ and tangent from $A$ to $\omega_{2}$, tangent from $B$ to $\omega_{1}$, respectively. Prove that $C A+C B=D A+D B$.
$5 \quad$ Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying $f(x+f(y))=f(x+y)+f(y)$ for all pairs of positive reals $x$ and $y$. Here, $\mathbb{R}^{+}$denotes the set of all positive reals.
Proposed by Paisan Nakmahachalasint, Thailand
6 Prove that there exist infinitely many pairs $(a, b)$ of natural numbers not equal to 1 such that $b^{b}+a$ is divisible by $a^{a}+b$.

7 There is graph $G_{0}$ on vertices $A_{1}, A_{2}, \ldots, A_{n}$. Graph $G_{n+1}$ on vertices $A_{1}, A_{2}, \ldots, A_{n}$ is constructed by the rule: $A_{i}$ and $A_{j}$ are joined only if in graph $G_{n}$ there is a vertices $A_{k} \neq A_{i}, A_{j}$ such that $A_{k}$ is joined with both $A_{i}$ and $A_{j}$. Prove that the sequence $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ is periodic after some term with period $T \leq 2^{n}$.
$8 \quad$ Consider those functions $f: \mathbb{N} \mapsto \mathbb{N}$ which satisfy the condition

$$
f(m+n) \geq f(m)+f(f(n))-1
$$

for all $m, n \in \mathbb{N}$. Find all possible values of $f(2007)$.

## Author: Nikolai Nikolov, Bulgaria

9 Given $\triangle A B C$ with point $D$ inside. Let $A_{0}=A D \cap B C, B_{0}=B D \cap A C, C_{0}=C D \cap A B$ and $A_{1}$, $B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ are midpoints of $B C, A C, A B, A D, B D, C D$ respectively. Two lines parallel to $A_{1} A_{2}$ and $C_{1} C_{2}$ and passes through point $B_{0}$ intersects $B_{1} B_{2}$ in points $A_{3}$ and $C_{3}$ respectively. Prove that $\frac{A_{3} B_{1}}{A_{3} B_{2}}=\frac{C_{3} B_{1}}{C_{3} B_{2}}$.

10 Let $b, n>1$ be integers. Suppose that for each $k>1$ there exists an integer $a_{k}$ such that $b-a_{k}^{n}$ is divisible by $k$. Prove that $b=A^{n}$ for some integer $A$.

## Author: Dan Brown, Canada

11 Let $A B C D E$ be convex pentagon such that $S(A B C)=S(B C D)=S(C D E)=S(D E A)=$ $S(E A B)$. Prove that there is a point $M$ inside pentagon such that $S(M A B)=S(M B C)=$ $S(M C D)=S(M D E)=S(M E A)$.

12 Prove that for all natural $m, n$ polynomial $\sum_{i=0}^{m}\binom{n+i}{n} \cdot x^{i}$ has at most one real root.

