AoPS Community

USAMO 2024

www.artofproblemsolving.com/community/c3785853
by DottedCaculator, ihatemath123, ike.chen, CyclicISLscelesTrapezoid, bobthegod78, Mr.Trick

Day 1 March 19

1 Find all integers $n \geq 3$ such that the following property holds: if we list the divisors of n ! in increasing order as $1=d_{1}<d_{2}<\cdots<d_{k}=n!$, then we have

$$
d_{2}-d_{1} \leq d_{3}-d_{2} \leq \cdots \leq d_{k}-d_{k-1} .
$$

Proposed by Luke Robitaille.
2 Let $S_{1}, S_{2}, \ldots, S_{100}$ be finite sets of integers whose intersection is not empty. For each nonempty $T \subseteq\left\{S_{1}, S_{2}, \ldots, S_{100}\right\}$, the size of the intersection of the sets in T is a multiple of the number of sets in T. What is the least possible number of elements that are in at least 50 sets?

Proposed by Rishabh Das
3 Let m be a positive integer. A triangulation of a polygon is [i] m-balanced[/i] if its triangles can be colored with m colors in such a way that the sum of the areas of all triangles of the same color is the same for each of the m colors. Find all positive integers n for which there exists an m-balanced triangulation of a regular n-gon.

Note: A triangulation of a convex polygon \mathcal{P} with $n \geq 3$ sides is any partitioning of \mathcal{P} into $n-2$ triangles by $n-3$ diagonals of \mathcal{P} that do not intersect in the polygon's interior.

Proposed by Krit Boonsiriseth
Day 2 March 20
4 Let m and n be positive integers. A circular necklace contains $m n$ beads, each either red or blue. It turned out that no matter how the necklace was cut into m blocks of n consecutive beads, each block had a distinct number of red beads. Determine, with proof, all possible values of the ordered pair (m, n).

Proposed by Rishabh Das
5 Point D is selected inside acute $\triangle A B C$ so that $\angle D A C=\angle A C B$ and $\angle B D C=90^{\circ}+\angle B A C$. Point E is chosen on ray $B D$ so that $A E=E C$. Let M be the midpoint of $B C$.

Show that line $A B$ is tangent to the circumcircle of triangle $B E M$.
Proposed by Anton Trygub

6 Let $n>2$ be an integer and let $\ell \in\{1,2, \ldots, n\}$. A collection A_{1}, \ldots, A_{k} of (not necessarily distinct) subsets of $\{1,2, \ldots, n\}$ is called ℓ-large if $\left|A_{i}\right| \geq \ell$ for all $1 \leq i \leq k$. Find, in terms of n and ℓ, the largest real number c such that the inequality

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} x_{i} x_{j} \frac{\left|A_{i} \cap A_{j}\right|^{2}}{\left|A_{i}\right| \cdot\left|A_{j}\right|} \geq c\left(\sum_{i=1}^{k} x_{i}\right)^{2}
$$

holds for all positive integer k, all nonnegative real numbers $x_{1}, x_{2}, \ldots, x_{k}$, and all ℓ-large collections $A_{1}, A_{2}, \ldots, A_{k}$ of subsets of $\{1,2, \ldots, n\}$.

Proposed by Titu Andreescu and Gabriel Dospinescu

