

AoPS Community

_

www.artofproblemsolving.com/community/c379029 by Seventh, LittleGlequius

1	It is given the sequence defined by
	$\{a_{n+2} = 6a_{n+1} - a_n\}_{n \in \mathbb{Z}_{>0}}, a_1 = 1, a_2 = 7.$
	Find all n such that there exists an integer m for which $a_n = 2m^2 - 1$.
2	Let S a finite subset of N. For every positive integer <i>i</i> , let A_i the number of partitions of <i>i</i> with all parts in $\mathbb{N} - S$. Prove that there exists $M \in \mathbb{N}$ such that $A_{i+1} > A_i$ for all $i > M$. (N is the set of positive integers)
3	Let Γ a fixed circunference. Find all finite sets S of points in Γ such that: For each point $P \in \Gamma$, there exists a partition of S in sets A and B $(A \cup B = S, A \cap B = \phi)$ such that $\sum_{X \in A} PX = \sum_{Y \in B} PY$.
4	Let Ω and Γ two circumferences such that Ω is in interior of Γ . Let P a point on Γ . Define points A and B distinct of P on Γ such that PA and PB are tangentes to Ω . Prove that when P varies on Γ , the line AB is tangent to a fixed circunference.
5	Let <i>T</i> the set of the infinite sequences of integers. For two given elements in <i>T</i> : $(a_1, a_2, a_3,)$ and $(b_1, b_2, b_3,)$, define the sum $(a_1, a_2, a_3,) + (b_1, b_2, b_3,) = (a_1 + b_1, a_2 + b_2, a_3 + b_3,)$. Let $f: T \to \mathbb{Z}$ a function such that: i) If $x \in T$ has exactly one of your terms equal 1 and all the others equal 0, then $f(x) = 0$. ii) $f(x + y) = f(x) + f(y)$, for all $x, y \in T$. Prove that $f(x) = 0$ for all $x \in T$

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.