AoPS Community

www.artofproblemsolving.com/community/c379029
by Seventh, LittleGlequius

1 It is given the sequence defined by

$$
\left\{a_{n+2}=6 a_{n+1}-a_{n}\right\}_{n \in \mathbb{Z}_{>0}}, a_{1}=1, a_{2}=7 .
$$

Find all n such that there exists an integer m for which $a_{n}=2 m^{2}-1$.
2 Let S a finite subset of \mathbb{N}. For every positive integer i, let A_{i} the number of partitions of i with all parts in $\mathbb{N}-S$.
Prove that there exists $M \in \mathbb{N}$ such that $A_{i+1}>A_{i}$ for all $i>M$.
(\mathbb{N} is the set of positive integers)
$3 \quad$ Let Γ a fixed circunference. Find all finite sets S of points in Γ such that:
For each point $P \in \Gamma$, there exists a partition of S in sets A and B ($A \cup B=S, A \cap B=\phi$) such that $\sum_{X \in A} P X=\sum_{Y \in B} P Y$.
$4 \quad$ Let Ω and Γ two circumferences such that Ω is in interior of Γ. Let P a point on Γ.
Define points A and B distinct of P on Γ such that $P A$ and $P B$ are tangentes to Ω. Prove that when P
varies on Γ, the line $A B$ is tangent to a fixed circunference.
5 Let T the set of the infinite sequences of integers. For two given elements in $T:\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ and $\left(b_{1}, b_{2}, b_{3}, \ldots\right)$, define the sum $\left(a_{1}, a_{2}, a_{3}, \ldots\right)+\left(b_{1}, b_{2}, b_{3}, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, \ldots\right)$. Let $f: T \rightarrow \mathbb{Z}$ a function such that:
i) If $x \in T$ has exactly one of your terms equal 1 and all the others equal 0 , then $f(x)=0$.
ii) $f(x+y)=f(x)+f(y)$, for all $x, y \in T$.

Prove that $f(x)=0$ for all $x \in T$

