AoPS Community

IMO 1974

www.artofproblemsolving.com/community/c3801
by orl, ma_go

Day 1

1 Three players A, B and C play a game with three cards and on each of these 3 cards it is written a positive integer, all 3 numbers are different. A game consists of shuffling the cards, giving each player a card and each player is attributed a number of points equal to the number written on the card and then they give the cards back. After a number (≥ 2) of games we find out that A has 20 points, B has 10 points and C has 9 points. We also know that in the last game B had the card with the biggest number. Who had in the first game the card with the second value (this means the middle card concerning its value).

2 Let $A B C$ be a triangle. Prove that there exists a point D on the side $A B$ of the triangle $A B C$, such that $C D$ is the geometric mean of $A D$ and $D B$, iff the triangle $A B C$ satisfies the inequality $\sin A \sin B \leq \sin ^{2} \frac{C}{2}$.

Alternative formulation, from IMO ShortList 1974, Finland 2: We consider a triangle $A B C$. Prove that: $\sin (A) \sin (B) \leq \sin ^{2}\left(\frac{C}{2}\right)$ is a necessary and sufficient condition for the existence of a point D on the segment $A B$ so that $C D$ is the geometrical mean of $A D$ and $B D$.

3 Prove that for any n natural, the number

$$
\sum_{k=0}^{n}\binom{2 n+1}{2 k+1} 2^{3 k}
$$

cannot be divided by 5 .

Day 2

4 Consider decompositions of an 8×8 chessboard into p non-overlapping rectangles subject to the following conditions:
(i) Each rectangle has as many white squares as black squares.
(ii) If a_{i} is the number of white squares in the i-th rectangle, then $a_{1}<a_{2}<\ldots<a_{p}$.

Find the maximum value of p for which such a decomposition is possible. For this value of p, determine all possible sequences $a_{1}, a_{2}, \ldots, a_{p}$.

5 The variables a, b, c, d, traverse, independently from each other, the set of positive real values. What are the values which the expression

$$
S=\frac{a}{a+b+d}+\frac{b}{a+b+c}+\frac{c}{b+c+d}+\frac{d}{a+c+d}
$$

takes?
6 Let $P(x)$ be a polynomial with integer coefficients. We denote $\operatorname{deg}(P)$ its degree which is \geq 1. Let $n(P)$ be the number of all the integers k for which we have $(P(k))^{2}=1$. Prove that $n(P)-\operatorname{deg}(P) \leq 2$.

