

AoPS Community

1975 IMO

IMO 1975

www.artofproblemsolving.com/community/c3802 by orl, Peter

Day 1	
1	We consider two sequences of real numbers $x_1 \ge x_2 \ge \ge x_n$ and $y_1 \ge y_2 \ge \ge y_n$. Let $z_1, z_2,, z_n$ be a permutation of the numbers $y_1, y_2,, y_n$. Prove that $\sum_{i=1}^n (x_i - y_i)^2 \le \sum_{i=1}^n (x_i - z_i)^2$.
2	Let a_1, \ldots, a_n be an infinite sequence of strictly positive integers, so that $a_k < a_{k+1}$ for any k . Prove that there exists an infinity of terms a_m , which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with x, y strictly positive integers and $p \neq q$.
3	In the plane of a triangle ABC , in its exterior, we draw the triangles ABR , BCP , CAQ so that $\angle PBC = \angle CAQ = 45^{\circ}$, $\angle BCP = \angle QCA = 30^{\circ}$, $\angle ABR = \angle RAB = 15^{\circ}$. Prove that a.) $\angle QRP = 90^{\circ}$, and b.) $QR = RP$.
Day 2	
4	When 4444^{4444} is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A and B are written in decimal notation.)
5	Can there be drawn on a circle of radius 1 a number of 1975 distinct points, so that the distance (measured on the chord) between any two points (from the considered points) is a rational number?
6	Determine the polynomials P of two variables so that:
	a.) for any real numbers t, x, y we have $P(tx, ty) = t^n P(x, y)$ where n is a positive integer, the same for all t, x, y ;
	b.) for any real numbers a, b, c we have $P(a + b, c) + P(b + c, a) + P(c + a, b) = 0$;
	c.) $P(1,0) = 1.$

Art of Problem Solving is an ACS WASC Accredited School.