Art of Problem Solving

AoPS Community

IMO 1976

www.artofproblemsolving.com/community/c3803
by orl

Day 1

1 In a convex quadrilateral (in the plane) with the area of $32 \mathrm{~cm}^{2}$ the sum of two opposite sides and a diagonal is 16 cm . Determine all the possible values that the other diagonal can have.

2 Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}\left(P_{j-1}(x)\right)$ for $\mathbf{j}=2, \ldots$ Prove that for any positive integer \mathbf{n} the roots of the equation $P_{n}(x)=x$ are all real and distinct.

3 A box whose shape is a parallelepiped can be completely filled with cubes of side 1 . If we put in it the maximum possible number of cubes, each of volume 2 , with the sides parallel to those of the box, then exactly 40 percent of the volume of the box is occupied. Determine the possible dimensions of the box.

Day 2

1 Determine the greatest number, who is the product of some positive integers, and the sum of these numbers is 1976.

2 We consider the following system with $q=2 p$:

$$
\begin{aligned}
& a_{11} x_{1}+\ldots+a_{1 q} x_{q}=0, \\
& a_{21} x_{1}+\ldots+a_{2 q} x_{q}=0, \\
& \ldots, \\
& a_{p 1} x_{1}+\ldots+a_{p q} x_{q}=0,
\end{aligned}
$$

in which every coefficient is an element from the set $\{-1,0,1\}$. Prove that there exists a solution x_{1}, \ldots, x_{q} for the system with the properties:
a.) all $x_{j}, j=1, \ldots, q$ are integers;
b.) there exists at least one j for which $x_{j} \neq 0$;
c.) $\left|x_{j}\right| \leq q$ for any $j=1, \ldots, q$.

3 A sequence $\left(u_{n}\right)$ is defined by

$$
u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}\left(u_{n-1}^{2}-2\right)-u_{1} \quad \text { for } n=1, \ldots
$$

Prove that for any positive integer n we have

$$
\left[u_{n}\right]=2^{\frac{\left(2^{n}-(-1)^{n}\right)}{3}}
$$

(where $[x]$ denotes the smallest integer $\leq x$)

