

AoPS Community

IMO 1978

www.artofproblemsolving.com/community/c3805 by orl

Day 1

_

1	Let m and n be positive integers such that $1 \le m < n$. In their decimal representations, the last three digits of 1978^m are equal, respectively, to the last three digits of 1978^n . Find m and n such that $m + n$ has its least value.
2	We consider a fixed point P in the interior of a fixed sphere. We construct three segments PA, PB, PC , perpendicular two by two, with the vertexes A, B, C on the sphere. We consider the vertex Q which is opposite to P in the parallelepiped (with right angles) with PA, PB, PC as edges. Find the locus of the point Q when A, B, C take all the positions compatible with our problem.
3	Let $0 < f(1) < f(2) < f(3) <$ a sequence with all its terms positive. The $n - th$ positive integer which doesn't belong to the sequence is $f(f(n)) + 1$. Find $f(240)$.
Day 2	
1	In a triangle ABC we have $AB = AC$. A circle which is internally tangent with the circum- scribed circle of the triangle is also tangent to the sides AB , AC in the points P , respectively Q. Prove that the midpoint of PQ is the center of the inscribed circle of the triangle ABC .
2	Let f be an injective function from $1, 2, 3,$ in itself. Prove that for any n we have: $\sum_{k=1}^{n} f(k)k^{-2} \ge \sum_{k=1}^{n} k^{-1}$.

1978 IMO

AoPS Online 🔯 AoPS Academy 🗿 AoPS & Cademy

Art of Problem Solving is an ACS WASC Accredited School.