Art of Problem Solving

AoPS Community

IMO 1981

www.artofproblemsolving.com/community/c3808
by orl, Boy Soprano II, yetti

Day 1

1 Consider a variable point P inside a given triangle $A B C$. Let D, E, F be the feet of the perpendiculars from the point P to the lines $B C, C A, A B$, respectively. Find all points P which minimize the sum

$$
\frac{B C}{P D}+\frac{C A}{P E}+\frac{A B}{P F} .
$$

2 Take r such that $1 \leq r \leq n$, and consider all subsets of r elements of the set $\{1,2, \ldots, n\}$. Each subset has a smallest element. Let $F(n, r)$ be the arithmetic mean of these smallest elements. Prove that:

$$
F(n, r)=\frac{n+1}{r+1} .
$$

3 Determine the maximum value of $m^{2}+n^{2}$, where m and n are integers in the range $1,2, \ldots, 1981$ satisfying $\left(n^{2}-m n-m^{2}\right)^{2}=1$.

Day 2

1 a.) For which $n>2$ is there a set of n consecutive positive integers such that the largest number in the set is a divisor of the least common multiple of the remaining $n-1$ numbers?
b.) For which $n>2$ is there exactly one set having this property?

2 Three circles of equal radius have a common point O and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of the triangle are collinear with the point O.

3 The function $f(x, y)$ satisfies: $f(0, y)=y+1, f(x+1,0)=f(x, 1), f(x+1, y+1)=f(x, f(x+$ $1, y)$) for all non-negative integers x, y. Find $f(4,1981)$.

