## AoPS Community

## IMO 1982

www.artofproblemsolving.com/community/c3809
by orl, grobber

## Day 1

1 The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0, f(3)>0, f(9999)=3333$ and for all $m, n$ :

$$
f(m+n)-f(m)-f(n)=0 \text { or } 1 .
$$

Determine $f(1982)$.
2 A non-isosceles triangle $A_{1} A_{2} A_{3}$ has sides $a_{1}, a_{2}, a_{3}$ with the side $a_{i}$ lying opposite to the vertex $A_{i}$. Let $M_{i}$ be the midpoint of the side $a_{i}$, and let $T_{i}$ be the point where the inscribed circle of triangle $A_{1} A_{2} A_{3}$ touches the side $a_{i}$. Denote by $S_{i}$ the reflection of the point $T_{i}$ in the interior angle bisector of the angle $A_{i}$. Prove that the lines $M_{1} S_{1}, M_{2} S_{2}$ and $M_{3} S_{3}$ are concurrent.

3 Consider infinite sequences $\left\{x_{n}\right\}$ of positive reals such that $x_{0}=1$ and $x_{0} \geq x_{1} \geq x_{2} \geq \ldots$.
a) Prove that for every such sequence there is an $n \geq 1$ such that:

$$
\frac{x_{0}^{2}}{x_{1}}+\frac{x_{1}^{2}}{x_{2}}+\ldots+\frac{x_{n-1}^{2}}{x_{n}} \geq 3.999 .
$$

b) Find such a sequence such that for all $n$ :

$$
\frac{x_{0}^{2}}{x_{1}}+\frac{x_{1}^{2}}{x_{2}}+\ldots+\frac{x_{n-1}^{2}}{x_{n}}<4 .
$$

## Day 2

1 Prove that if $n$ is a positive integer such that the equation

$$
x^{3}-3 x y^{2}+y^{3}=n
$$

has a solution in integers $x, y$, then it has at least three such solutions. Show that the equation has no solutions in integers for $n=2891$.

2 The diagonals $A C$ and $C E$ of the regular hexagon $A B C D E F$ are divided by inner points $M$ and $N$ respectively, so that

$$
\frac{A M}{A C}=\frac{C N}{C E}=r
$$

Determine $r$ if $B, M$ and $N$ are collinear.
3 Let $S$ be a square with sides length 100. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_{0} A_{1}, A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n-1} A_{n}$ with $A_{0}=A_{n}$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac{1}{2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than 1 and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than 198.

