

AoPS Community

1982 IMO

IMO 1982

www.artofproblemsolving.com/community/c3809 by orl, grobber

Day 1

1 The function f(n) is defined on the positive integers and takes non-negative integer values. f(2) = 0, f(3) > 0, f(9999) = 3333 and for all m, n:

$$f(m+n) - f(m) - f(n) = 0$$
 or 1.

Determine f(1982).

- **2** A non-isosceles triangle $A_1A_2A_3$ has sides a_1, a_2, a_3 with the side a_i lying opposite to the vertex A_i . Let M_i be the midpoint of the side a_i , and let T_i be the point where the inscribed circle of triangle $A_1A_2A_3$ touches the side a_i . Denote by S_i the reflection of the point T_i in the interior angle bisector of the angle A_i . Prove that the lines M_1S_1, M_2S_2 and M_3S_3 are concurrent.
- **3** Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0 = 1$ and $x_0 \ge x_1 \ge x_2 \ge \dots$

a) Prove that for every such sequence there is an $n \ge 1$ such that:

$$\frac{x_0^2}{x_1} + \frac{x_1^2}{x_2} + \ldots + \frac{x_{n-1}^2}{x_n} \ge 3.999.$$

b) Find such a sequence such that for all *n*:

$$\frac{x_0^2}{x_1} + \frac{x_1^2}{x_2} + \ldots + \frac{x_{n-1}^2}{x_n} < 4.$$

Day 2

1 Prove that if *n* is a positive integer such that the equation

$$x^3 - 3xy^2 + y^3 = n$$

has a solution in integers x, y, then it has at least three such solutions. Show that the equation has no solutions in integers for n = 2891.

2 The diagonals *AC* and *CE* of the regular hexagon *ABCDEF* are divided by inner points *M* and *N* respectively, so that

$$\frac{AM}{AC} = \frac{CN}{CE} = r.$$

AoPS Community

Determine r if B, M and N are collinear.

3 Let *S* be a square with sides length 100. Let *L* be a path within *S* which does not meet itself and which is composed of line segments $A_0A_1, A_1A_2, A_2A_3, \ldots, A_{n-1}A_n$ with $A_0 = A_n$. Suppose that for every point *P* on the boundary of *S* there is a point of *L* at a distance from *P* no greater than $\frac{1}{2}$. Prove that there are two points *X* and *Y* of *L* such that the distance between *X* and *Y* is not greater than 1 and the length of the part of *L* which lies between *X* and *Y* is not smaller than 198.

AoPS Online 🔯 AoPS Academy 🔯 AoPS & Cademy