

AoPS Community

IMO 1984

_

www.artofproblemsolving.com/community/c3811 by orl, ehsan2004

Day 1	
1	Prove that $0 \le yz + zx + xy - 2xyz \le \frac{7}{27}$, where x, y and z are non-negative real numbers satisfying $x + y + z = 1$.
2	Find one pair of positive integers a, b such that $ab(a+b)$ is not divisible by 7, but $(a+b)^7 - a^7 - b^7$ is divisible by 7^7 .
3	Given points O and A in the plane. Every point in the plane is colored with one of a finite number of colors. Given a point X in the plane, the circle $C(X)$ has center O and radius $OX + \frac{\angle AOX}{OX}$, where $\angle AOX$ is measured in radians in the range $[0, 2\pi)$. Prove that we can find a point X , not on OA , such that its color appears on the circumference of the circle $C(X)$.
Day 2	
1	Let $ABCD$ be a convex quadrilateral with the line CD being tangent to the circle on diameter AB . Prove that the line AB is tangent to the circle on diameter CD if and only if the lines BC and AD are parallel.
2	Let d be the sum of the lengths of all the diagonals of a plane convex polygon with n vertices (where $n > 3$). Let p be its perimeter. Prove that:
	$n-3 < \frac{2d}{p} < \left[\frac{n}{2}\right] \cdot \left[\frac{n+1}{2}\right] - 2,$
	where $[x]$ denotes the greatest integer not exceeding x .
3	Let a, b, c, d be odd integers such that $0 < a < b < c < d$ and $ad = bc$. Prove that if $a + d = 2^k$ and $b + c = 2^m$ for some integers k and m , then $a = 1$.

Art of Problem Solving is an ACS WASC Accredited School.