AoPS Community

IMO 1984

www.artofproblemsolving.com/community/c3811
by orl, ehsan2004

Day 1

1 Prove that $0 \leq y z+z x+x y-2 x y z \leq \frac{7}{27}$, where x, y and z are non-negative real numbers satisfying $x+y+z=1$.

2 Find one pair of positive integers a, b such that $a b(a+b)$ is not divisible by 7 , but $(a+b)^{7}-a^{7}-b^{7}$ is divisible by 7^{7}.
$3 \quad$ Given points O and A in the plane. Every point in the plane is colored with one of a finite number of colors. Given a point X in the plane, the circle $C(X)$ has center O and radius $O X+\frac{\angle A O X}{O X}$, where $\angle A O X$ is measured in radians in the range $[0,2 \pi)$. Prove that we can find a point X, not on $O A$, such that its color appears on the circumference of the circle $C(X)$.

Day 2

1 Let $A B C D$ be a convex quadrilateral with the line $C D$ being tangent to the circle on diameter $A B$. Prove that the line $A B$ is tangent to the circle on diameter $C D$ if and only if the lines $B C$ and $A D$ are parallel.

2 Let d be the sum of the lengths of all the diagonals of a plane convex polygon with n vertices (where $n>3$). Let p be its perimeter. Prove that:

$$
n-3<\frac{2 d}{p}<\left[\frac{n}{2}\right] \cdot\left[\frac{n+1}{2}\right]-2
$$

where $[x]$ denotes the greatest integer not exceeding x.
3 Let a, b, c, d be odd integers such that $0<a<b<c<d$ and $a d=b c$. Prove that if $a+d=2^{k}$ and $b+c=2^{m}$ for some integers k and m, then $a=1$.

