Art of Problem Solving

AoPS Community

IMO 1985

www.artofproblemsolving.com/community/c3812
by orl

Day 1

1 A circle has center on the side $A B$ of the cyclic quadrilateral $A B C D$. The other three sides are tangent to the circle. Prove that $A D+B C=A B$.

2 Let n and k be relatively prime positive integers with $k<n$. Each number in the set $M=$ $\{1,2,3, \ldots, n-1\}$ is colored either blue or white. For each i in M, both i and $n-i$ have the same color. For each $i \neq k$ in M both i and $|i-k|$ have the same color. Prove that all numbers in M must have the same color.

3 For any polynomial $P(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2, \ldots$ let $Q_{i}(x)=(1+x)^{i}$. Prove that if $i_{1}, i_{2}, \ldots, i_{n}$ are integers satisfying $0 \leq i_{1}<i_{2}<\ldots<i_{n}$, then:

$$
o\left(Q_{i_{1}}+Q_{i_{2}}+\ldots+Q_{i_{n}}\right) \geq o\left(Q_{i_{1}}\right) .
$$

Day 2

4 Given a set M of 1985 distinct positive integers, none of which has a prime divisor greater than 23 , prove that M contains a subset of 4 elements whose product is the 4th power of an integer.
$5 \quad$ A circle with center O passes through the vertices A and C of the triangle $A B C$ and intersects the segments $A B$ and $B C$ again at distinct points K and N respectively. Let M be the point of intersection of the circumcircles of triangles $A B C$ and $K B N$ (apart from B). Prove that $\angle O M B=90^{\circ}$.

6 For every real number x_{1}, construct the sequence x_{1}, x_{2}, \ldots by setting:

$$
x_{n+1}=x_{n}\left(x_{n}+\frac{1}{n}\right) .
$$

Prove that there exists exactly one value of x_{1} which gives $0<x_{n}<x_{n+1}<1$ for all n.

