Art of Problem Solving

AoPS Community

IMO 1986

www.artofproblemsolving.com/community/c3813
by orl

Day 1

1 Let d be any positive integer not equal to 2,5 or 13 . Show that one can find distinct a, b in the set $\{2,5,13, d\}$ such that $a b-1$ is not a perfect square.

2 Given a point P_{0} in the plane of the triangle $A_{1} A_{2} A_{3}$. Define $A_{s}=A_{s-3}$ for all $s \geq 4$. Construct a set of points $P_{1}, P_{2}, P_{3}, \ldots$ such that P_{k+1} is the image of P_{k} under a rotation center A_{k+1} through an angle 120° clockwise for $k=0,1,2, \ldots$. Prove that if $P_{1986}=P_{0}$, then the triangle $A_{1} A_{2} A_{3}$ is equilateral.

3 To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers x, y, z respectively, and $y<0$, then the following operation is allowed: x, y, z are replaced by $x+y,-y, z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

Day 2

1 Let A, B be adjacent vertices of a regular n-gon $(n \geq 5)$ with center O. A triangle $X Y Z$, which is congruent to and initially coincides with $O A B$, moves in the plane in such a way that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the polygon. Find the locus of X.

2 Find all functions f defined on the non-negative reals and taking non-negative real values such that: $f(2)=0, f(x) \neq 0$ for $0 \leq x<2$, and $f(x f(y)) f(y)=f(x+y)$ for all x, y.

3 Given a finite set of points in the plane, each with integer coordinates, is it always possible to color the points red or white so that for any straight line L parallel to one of the coordinate axes the difference (in absolute value) between the numbers of white and red points on L is not greater than 1 ?

