

AoPS Community

IMO 1986

www.artofproblemsolving.com/community/c3813 by orl

Day 1

1	Let <i>d</i> be any positive integer not equal to 2, 5 or 13. Show that one can find distinct <i>a</i> , <i>b</i> in the set $\{2, 5, 13, d\}$ such that $ab - 1$ is not a perfect square.
2	Given a point P_0 in the plane of the triangle $A_1A_2A_3$. Define $A_s = A_{s-3}$ for all $s \ge 4$. Construct a set of points P_1, P_2, P_3, \ldots such that P_{k+1} is the image of P_k under a rotation center A_{k+1} through an angle 120^o clockwise for $k = 0, 1, 2, \ldots$ Prove that if $P_{1986} = P_0$, then the triangle $A_1A_2A_3$ is equilateral.
3	To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers x, y, z respectively, and $y < 0$, then the following operation is allowed: x, y, z are replaced by $x + y, -y, z + y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.
Day 2	
-	
1	Let A, B be adjacent vertices of a regular n -gon ($n \ge 5$) with center O . A triangle XYZ , which is congruent to and initially coincides with OAB , moves in the plane in such a way that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the polygon. Find the locus of X .
1	Let A, B be adjacent vertices of a regular n -gon ($n \ge 5$) with center O . A triangle XYZ , which is congruent to and initially coincides with OAB , moves in the plane in such a way that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the polygon. Find the locus of X . Find all functions f defined on the non-negative reals and taking non-negative real values such that: $f(2) = 0, f(x) \ne 0$ for $0 \le x < 2$, and $f(xf(y))f(y) = f(x + y)$ for all x, y .

1986 IMO

Art of Problem Solving is an ACS WASC Accredited School.