

AoPS Community

IMO 1987

www.artofproblemsolving.com/community/c3814 by orl

Day 1

1	Let $p_n(k)$ be the number of permutations of the set $\{1, 2, 3,, n\}$ which have exactly k fixed points. Prove that $\sum_{k=0}^{n} kp_n(k) = n!$.
2	In an acute-angled triangle ABC the interior bisector of angle A meets BC at L and meets the circumcircle of ABC again at N . From L perpendiculars are drawn to AB and AC , with feet K and M respectively. Prove that the quadrilateral $AKNM$ and the triangle ABC have equal areas.
3	Let x_1, x_2, \ldots, x_n be real numbers satisfying $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$. Prove that for every integer $k \ge 2$ there are integers a_1, a_2, \ldots, a_n , not all zero, such that $ a_i \le k - 1$ for all i , and $ a_1x_1 + a_2x_2 + \ldots + a_nx_n \le \frac{(k-1)\sqrt{n}}{k^n - 1}$.
Day	2
1	Prove that there is no function f from the set of non-negative integers into itself such that $f(f(n)) = n + 1987$ for all n .
2	Let $n \ge 3$ be an integer. Prove that there is a set of n points in the plane such that the distance between any two points is irrational and each set of three points determines a non-degenerate triangle with rational area.
3	Let $n \ge 2$ be an integer. Prove that if $k^2 + k + n$ is prime for all integers k such that $0 \le k \le \sqrt{\frac{n}{3}}$,

Let $n \ge 2$ be an integer. Prove that if $k^2 + k + n$ is prime for all integers k such that $0 \le k \le \sqrt{\frac{n}{3}}$, then $k^2 + k + n$ is prime for all integers k such that $0 \le k \le n - 2$.

Act of Problem Solving is an ACS WASC Accredited School.