AoPS Community

IMO 1989

www.artofproblemsolving.com/community/c3816
by CinarArslan, orl

- 1989 (Taylor's Version)

Day 1

1 Prove that in the set $\{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $A_{i},\{i=$ $1,2, \ldots, 117\}$ such that
i.) each A_{i} contains 17 elements
ii.) the sum of all the elements in each A_{i} is the same.
$2 A B C$ is a triangle, the bisector of angle A meets the circumcircle of triangle $A B C$ in A_{1}, points B_{1} and C_{1} are defined similarly. Let $A A_{1}$ meet the lines that bisect the two external angles at B and C in A_{0}. Define B_{0} and C_{0} similarly. Prove that the area of triangle $A_{0} B_{0} C_{0}=2$. area of hexagon $A C_{1} B A_{1} C B_{1} \geq 4$. area of triangle $A B C$.
$3 \quad$ Let n and k be positive integers and let S be a set of n points in the plane such that
i.) no three points of S are collinear, and
ii.) for every point P of S there are at least k points of S equidistant from P.

Prove that:

$$
k<\frac{1}{2}+\sqrt{2 \cdot n}
$$

Day 2

4 Let $A B C D$ be a convex quadrilateral such that the sides $A B, A D, B C$ satisfy $A B=A D+B C$. There exists a point P inside the quadrilateral at a distance h from the line $C D$ such that $A P=$ $h+A D$ and $B P=h+B C$. Show that:

$$
\frac{1}{\sqrt{h}} \geq \frac{1}{\sqrt{A D}}+\frac{1}{\sqrt{B C}}
$$

5 Prove that for each positive integer n there exist n consecutive positive integers none of which is an integral power of a prime number.

6 A permutation $\left\{x_{1}, x_{2}, \ldots, x_{2 n}\right\}$ of the set $\{1,2, \ldots, 2 n\}$ where n is a positive integer, is said to have property T if $\left|x_{i}-x_{i+1}\right|=n$ for at least one i in $\{1,2, \ldots, 2 n-1\}$. Show that, for each n, there are more permutations with property T than without.

