

AoPS Community

IMO 1989

www.artofproblemsolving.com/community/c3816 by CinarArslan, orl

– 1989 (Taylor's Version)

Day 1	
1	Prove that in the set $\{1, 2,, 1989\}$ can be expressed as the disjoint union of subsets $A_i, \{i = 1, 2,, 117\}$ such that
	i.) each A_i contains 17 elements
	ii.) the sum of all the elements in each A_i is the same.
2	ABC is a triangle, the bisector of angle A meets the circumcircle of triangle ABC in A_1 , points B_1 and C_1 are defined similarly. Let AA_1 meet the lines that bisect the two external angles at B and C in A_0 . Define B_0 and C_0 similarly. Prove that the area of triangle $A_0B_0C_0 = 2$ · area of hexagon $AC_1BA_1CB_1 \ge 4$ · area of triangle ABC .
3	Let n and k be positive integers and let S be a set of n points in the plane such that
	i.) no three points of S are collinear, and
	ii.) for every point P of S there are at least k points of S equidistant from P .
	Prove that: $h \in \frac{1}{2} + \sqrt{2 - n}$

$$k < \frac{1}{2} + \sqrt{2 \cdot n}$$

Day 2

4 Let ABCD be a convex quadrilateral such that the sides AB, AD, BC satisfy AB = AD + BC. There exists a point P inside the quadrilateral at a distance h from the line CD such that AP = h + AD and BP = h + BC. Show that:

$$\frac{1}{\sqrt{h}} \geq \frac{1}{\sqrt{AD}} + \frac{1}{\sqrt{BC}}$$

1989 IMO

AoPS Community

1989 IMO

- **5** Prove that for each positive integer *n* there exist *n* consecutive positive integers none of which is an integral power of a prime number.
- **6** A permutation $\{x_1, x_2, \ldots, x_{2n}\}$ of the set $\{1, 2, \ldots, 2n\}$ where *n* is a positive integer, is said to have property *T* if $|x_i x_{i+1}| = n$ for at least one *i* in $\{1, 2, \ldots, 2n 1\}$. Show that, for each *n*, there are more permutations with property *T* than without.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.