AoPS Community

IMO 1990

www.artofproblemsolving.com/community/c3817
by orl, grobber

Day 1

1 Chords $A B$ and $C D$ of a circle intersect at a point E inside the circle. Let M be an interior point of the segment $E B$. The tangent line at E to the circle through D, E, and M intersects the lines $B C$ and $A C$ at F and G, respectively. If

$$
\frac{A M}{A B}=t
$$

find $\frac{E G}{E F}$ in terms of t.
2 Let $n \geq 3$ and consider a set E of $2 n-1$ distinct points on a circle. Suppose that exactly k of these points are to be colored black. Such a coloring is good if there is at least one pair of black points such that the interior of one of the arcs between them contains exactly n points from E. Find the smallest value of k so that every such coloring of k points of E is good.

3 Determine all integers $n>1$ such that

$$
\frac{2^{n}+1}{n^{2}}
$$

is an integer.

Day 2

$1 \quad$ Let \mathbb{Q}^{+}be the set of positive rational numbers. Construct a function $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$such that

$$
f(x f(y))=\frac{f(x)}{y}
$$

for all x, y in \mathbb{Q}^{+}.
2 Given an initial integer $n_{0}>1$, two players, \mathcal{A} and \mathcal{B}, choose integers $n_{1}, n_{2}, n_{3}, \ldots$ alternately according to the following rules :
I.) Knowing $n_{2 k}, \mathcal{A}$ chooses any integer $n_{2 k+1}$ such that

$$
n_{2 k} \leq n_{2 k+1} \leq n_{2 k}^{2} .
$$

II.) Knowing $n_{2 k+1}, \mathcal{B}$ chooses any integer $n_{2 k+2}$ such that

$$
\frac{n_{2 k+1}}{n_{2 k+2}}
$$

is a prime raised to a positive integer power.
Player \mathcal{A} wins the game by choosing the number 1990; player \mathcal{B} wins by choosing the number 1. For which n_{0} does :
a.) \mathcal{A} have a winning strategy?
b.) \mathcal{B} have a winning strategy?
c.) Neither player have a winning strategy?

3 Prove that there exists a convex 1990-gon with the following two properties :
a.) All angles are equal.
b.) The lengths of the 1990 sides are the numbers $1^{2}, 2^{2}, 3^{2}, \cdots, 1990^{2}$ in some order.

