

AoPS Community

IMO 1991

www.artofproblemsolving.com/community/c3818 by jgnr, orl

Day 1

1	Given a triangle ABC , let I be the center of its inscribed circle. The internal bisectors of the angles A, B, C meet the opposite sides in A', B', C' respectively. Prove that
	$\frac{1}{4} < \frac{AI \cdot BI \cdot CI}{AA' \cdot BB' \cdot CC'} \le \frac{8}{27}.$
2	Let $n > 6$ be an integer and a_1, a_2, \cdots, a_k be all the natural numbers less than n and relatively prime to n . If
	$a_2 - a_1 = a_3 - a_2 = \dots = a_k - a_{k-1} > 0,$
	prove that n must be either a prime number or a power of 2.
3	Let $S = \{1, 2, 3, \dots, 280\}$. Find the smallest integer n such that each n -element subset of S contains five numbers which are pairwise relatively prime.
Day 2	
1	Suppose G is a connected graph with k edges. Prove that it is possible to label the edges $1, 2,, k$ in such a way that at each vertex which belongs to two or more edges, the greates common divisor of the integers labeling those edges is equal to 1.
	Note: Graph-Definition . A graph consists of a set of points, called vertices, together with a set of edges joining certain pairs of distinct vertices. Each pair of vertices u, v belongs to at most one edge. The graph G is connected if for each pair of distinct vertices x, y there is som sequence of vertices $x = v_0, v_1, v_2, \cdots, v_m = y$ such that each pair v_i, v_{i+1} $(0 \le i < m)$ is joined by an edge of G .
2	Let <i>ABC</i> be a triangle and <i>P</i> an interior point of <i>ABC</i> . Show that at least one of the angle $\angle PAB$, $\angle PBC$, $\angle PCA$ is less than or equal to 30°.
3	An infinite sequence x_0, x_1, x_2, \ldots of real numbers is said to be bounded if there is a constant
3	An infinite sequence $x_0, x_1, x_2,$ of real numbers is said to be bounded if there is a constan C such that $ x_i \leq C$ for every $i \geq 0$. Given any real number $a > 1$, construct a bounded

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱