Art of Problem Solving

AoPS Community

IMO 1992

www.artofproblemsolving.com/community/c3819
by ehsan2004, orl

Day 1

1 Find all integers a, b, c with $1<a<b<c$ such that

$$
(a-1)(b-1)(c-1)
$$

is a divisor of $a b c-1$.
2 Let \mathbb{R} denote the set of all real numbers. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+f(y)\right)=y+(f(x))^{2} \quad \text { for all } x, y \in \mathbb{R}
$$

3 Consider 9 points in space, no four of which are coplanar. Each pair of points is joined by an edge (that is, a line segment) and each edge is either colored blue or red or left uncolored. Find the smallest value of n such that whenever exactly n edges are colored, the set of colored edges necessarily contains a triangle all of whose edges have the same color.

Day 2

1 In the plane let C be a circle, L a line tangent to the circle C, and M a point on L. Find the locus of all points P with the following property: there exists two points Q, R on L such that M is the midpoint of $Q R$ and C is the inscribed circle of triangle $P Q R$.

2 Let S be a finite set of points in three-dimensional space. Let S_{x}, S_{y}, S_{z} be the sets consisting of the orthogonal projections of the points of S onto the $y z$-plane, $z x$-plane, $x y$-plane, respectively. Prove that

$$
|S|^{2} \leq\left|S_{x}\right| \cdot\left|S_{y}\right| \cdot\left|S_{z}\right|,
$$

where $|A|$ denotes the number of elements in the finite set A.
Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane.

3 For each positive integer $n, S(n)$ is defined to be the greatest integer such that, for every positive integer $k \leq S(n), n^{2}$ can be written as the sum of k positive squares.
a.) Prove that $S(n) \leq n^{2}-14$ for each $n \geq 4$.
b.) Find an integer n such that $S(n)=n^{2}-14$.
c.) Prove that there are infintely many integers n such that $S(n)=n^{2}-14$.

