

AoPS Community

IMO 1992

Day 1

1

www.artofproblemsolving.com/community/c3819 by ehsan2004, orl

Find all integers a, b, c with 1 < a < b < c such that

	(a-1)(b-1)(c-1)
	is a divisor of $abc - 1$.
2	Let \mathbb{R} denote the set of all real numbers. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
	$f(x^2 + f(y)) = y + (f(x))^2$ for all $x, y \in \mathbb{R}$.
3	Consider 9 points in space, no four of which are coplanar. Each pair of points is joined by an edge (that is, a line segment) and each edge is either colored blue or red or left uncolored. Find the smallest value of n such that whenever exactly n edges are colored, the set of colored edges necessarily contains a triangle all of whose edges have the same color.
Day 2	
1	In the plane let C be a circle, L a line tangent to the circle C , and M a point on L . Find the locus of all points P with the following property: there exists two points Q, R on L such that M is the midpoint of QR and C is the inscribed circle of triangle PQR .
2	Let <i>S</i> be a finite set of points in three-dimensional space. Let S_x , S_y , S_z be the sets consisting of the orthogonal projections of the points of <i>S</i> onto the <i>yz</i> -plane, <i>zx</i> -plane, <i>xy</i> -plane, <i>respectively</i> . Prove that $ S ^2 \leq S_x \cdot S_y \cdot S_z ,$
	where $ A $ denotes the number of elements in the finite set A.
	Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane.
3	For each positive integer n , $S(n)$ is defined to be the greatest integer such that, for every positive integer $k \leq S(n)$, n^2 can be written as the sum of k positive squares.
	a.) Prove that $S(n) \le n^2 - 14$ for each $n \ge 4$.

1992 IMO

AoPS Community

1992 IMO

b.) Find an integer n such that $S(n) = n^2 - 14$.

c.) Prove that there are infinitely many integers n such that $S(n) = n^2 - 14$.

Act of Problem Solving is an ACS WASC Accredited School.