Art of Problem Solving

AoPS Community

IMO 1994

www.artofproblemsolving.com/community/c3821
by darij grinberg, Valentin Vornicu, grobber, galois

Day 1 July 13th
1 Let m and n be two positive integers. Let $a_{1}, a_{2}, \ldots, a_{m}$ be m different numbers from the set $\{1,2, \ldots, n\}$ such that for any two indices i and j with $1 \leq i \leq j \leq m$ and $a_{i}+a_{j} \leq n$, there exists an index k such that $a_{i}+a_{j}=a_{k}$. Show that

$$
\frac{a_{1}+a_{2}+\ldots+a_{m}}{m} \geq \frac{n+1}{2} .
$$

2 Let $A B C$ be an isosceles triangle with $A B=A C . M$ is the midpoint of $B C$ and O is the point on the line $A M$ such that $O B$ is perpendicular to $A B$. Q is an arbitrary point on $B C$ different from B and C. E lies on the line $A B$ and F lies on the line $A C$ such that E, Q, F are distinct and collinear. Prove that $O Q$ is perpendicular to $E F$ if and only if $Q E=Q F$.

3 For any positive integer k, let f_{k} be the number of elements in the set $\{k+1, k+2, \ldots, 2 k\}$ whose base 2 representation contains exactly three 1s.
(a) Prove that for any positive integer m, there exists at least one positive integer k such that $f(k)=m$.
(b) Determine all positive integers m for which there exists exactly one k with $f(k)=m$.

Day 2 July 14th

$4 \quad$ Find all ordered pairs (m, n) where m and n are positive integers such that $\frac{n^{3}+1}{m n-1}$ is an integer.
$5 \quad$ Let S be the set of all real numbers strictly greater than 1 . Find all functions $f: S \rightarrow S$ satisfying the two conditions:
(a) $f(x+f(y)+x f(y))=y+f(x)+y f(x)$ for all x, y in S;
(b) $\frac{f(x)}{x}$ is strictly increasing on each of the two intervals $-1<x<0$ and $0<x$.

6 Show that there exists a set A of positive integers with the following property: for any infinite set S of primes, there exist two positive integers m in A and n not in A, each of which is a product of k distinct elements of S for some $k \geq 2$.

