AoPS Community

IMO 1996

www.artofproblemsolving.com/community/c3823
by orl, Arne, lomos_lupin

Day 1 July 10th
1 We are given a positive integer r and a rectangular board $A B C D$ with dimensions $A B=$ $20, B C=12$. The rectangle is divided into a grid of 20×12 unit squares. The following moves are permitted on the board: one can move from one square to another only if the distance between the centers of the two squares is \sqrt{r}. The task is to find a sequence of moves leading from the square with A as a vertex to the square with B as a vertex.
(a) Show that the task cannot be done if r is divisible by 2 or 3 .
(b) Prove that the task is possible when $r=73$.
(c) Can the task be done when $r=97$?

2 Let P be a point inside a triangle $A B C$ such that

$$
\angle A P B-\angle A C B=\angle A P C-\angle A B C .
$$

Let D, E be the incenters of triangles $A P B, A P C$, respectively. Show that the lines $A P, B D$, $C E$ meet at a point.
$3 \quad$ Let \mathbb{N}_{0} denote the set of nonnegative integers. Find all functions f from \mathbb{N}_{0} to itself such that

$$
f(m+f(n))=f(f(m))+f(n) \quad \text { for all } m, n \in \mathbb{N}_{0} .
$$

Day 2 July 11th
4 The positive integers a and b are such that the numbers $15 a+16 b$ and $16 a-15 b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?

5 Let $A B C D E F$ be a convex hexagon such that $A B$ is parallel to $D E, B C$ is parallel to $E F$, and $C D$ is parallel to $F A$. Let R_{A}, R_{C}, R_{E} denote the circumradii of triangles $F A B, B C D, D E F$, respectively, and let P denote the perimeter of the hexagon. Prove that

$$
R_{A}+R_{C}+R_{E} \geq \frac{P}{2}
$$

6 Let p, q, n be three positive integers with $p+q<n$. Let $\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ be an $(n+1)$-tuple of integers satisfying the following conditions:
(a) $x_{0}=x_{n}=0$, and
(b) For each i with $1 \leq i \leq n$, either $x_{i}-x_{i-1}=p$ or $x_{i}-x_{i-1}=-q$.

Show that there exist indices $i<j$ with $(i, j) \neq(0, n)$, such that $x_{i}=x_{j}$.

