IMO 1997

www.artofproblemsolving.com/community/c3824
by Valentin Vornicu, Virgil Nicula, iandrei, hxtung

Day 1 July 24th
1 In the plane the points with integer coordinates are the vertices of unit squares. The squares are coloured alternately black and white (as on a chessboard). For any pair of positive integers m and n, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths m and n, lie along edges of the squares. Let S_{1} be the total area of the black part of the triangle and S_{2} be the total area of the white part. Let $f(m, n)=\left|S_{1}-S_{2}\right|$.
a) Calculate $f(m, n)$ for all positive integers m and n which are either both even or both odd.
b) Prove that $f(m, n) \leq \frac{1}{2} \max \{m, n\}$ for all m and n.
c) Show that there is no constant $C \in \mathbb{R}$ such that $f(m, n)<C$ for all m and n.

2 It is known that $\angle B A C$ is the smallest angle in the triangle $A B C$. The points B and C divide the circumcircle of the triangle into two arcs. Let U be an interior point of the arc between B and C which does not contain A. The perpendicular bisectors of $A B$ and $A C$ meet the line $A U$ at V and W, respectively. The lines $B V$ and $C W$ meet at T.

Show that $A U=T B+T C$.

Alternative formulation:

Four different points A, B, C, D are chosen on a circle Γ such that the triangle $B C D$ is not right-angled. Prove that:
(a) The perpendicular bisectors of $A B$ and $A C$ meet the line $A D$ at certain points W and V, respectively, and that the lines $C V$ and $B W$ meet at a certain point T.
(b) The length of one of the line segments $A D, B T$, and $C T$ is the sum of the lengths of the other two.

3 Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying the conditions:

$$
\left\{\begin{array}{cl}
\left|x_{1}+x_{2}+\cdots+x_{n}\right| & =1 \\
\left|x_{i}\right| & \leq \frac{n+1}{2} \quad \text { for } i=1,2, \ldots, n
\end{array}\right.
$$

Show that there exists a permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\left|y_{1}+2 y_{2}+\cdots+n y_{n}\right| \leq \frac{n+1}{2} .
$$

Day 2 July 25th

$4 \quad$ An $n \times n$ matrix whose entries come from the set $S=\{1,2, \ldots, 2 n-1\}$ is called a silver matrix if, for each $i=1,2, \ldots, n$, the i-th row and the i-th column together contain all elements of S. Show that:
(a) there is no silver matrix for $n=1997$;
(b) silver matrices exist for infinitely many values of n.
$5 \quad$ Find all pairs (a, b) of positive integers that satisfy the equation: $a^{b^{2}}=b^{a}$.
6 For each positive integer n, let $f(n)$ denote the number of ways of representing n as a sum of powers of 2 with nonnegative integer exponents. Representations which differ only in the ordering of their summands are considered to be the same. For instance, $f(4)=4$, because the number 4 can be represented in the following four ways: $4 ; 2+2 ; 2+1+1 ; 1+1+1+1$.

Prove that, for any integer $n \geq 3$ we have $2^{\frac{n^{2}}{4}}<f\left(2^{n}\right)<2^{\frac{n^{2}}{2}}$.

