Art of Problem Solving

AoPS Community

IMO 1998

www.artofproblemsolving.com/community/c3825
by orl, grobber, sprmnt21, pohoatza

Day 1 June 15th
1 A convex quadrilateral $A B C D$ has perpendicular diagonals. The perpendicular bisectors of the sides $A B$ and $C D$ meet at a unique point P inside $A B C D$. Prove that the quadrilateral $A B C D$ is cyclic if and only if triangles $A B P$ and $C D P$ have equal areas.

2 In a contest, there are m candidates and n judges, where $n \geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most k candidates. Prove that

$$
\frac{k}{m} \geq \frac{n-1}{2 n}
$$

3 For any positive integer n, let $\tau(n)$ denote the number of its positive divisors (including 1 and itself). Determine all positive integers m for which there exists a positive integer n such that $\frac{\tau\left(n^{2}\right)}{\tau(n)}=m$.

Day 2 June 16th
4 Determine all pairs (x, y) of positive integers such that $x^{2} y+x+y$ is divisible by $x y^{2}+y+7$.
5 Let I be the incenter of triangle $A B C$. Let K, L and M be the points of tangency of the incircle of $A B C$ with $A B, B C$ and $C A$, respectively. The line t passes through B and is parallel to $K L$. The lines $M K$ and $M L$ intersect t at the points R and S. Prove that $\angle R I S$ is acute.
$6 \quad$ Determine the least possible value of $f(1998)$, where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a function such that for all $m, n \in \mathbb{N}$,

$$
f\left(n^{2} f(m)\right)=m(f(n))^{2} .
$$

