Art of Problem Solving

AoPS Community

IMO 1999

www.artofproblemsolving.com/community/c3826
by orl, grobber, sprmnt21

Day 1

1 A set S of points from the space will be called completely symmetric if it has at least three elements and fulfills the condition that for every two distinct points A and B from S, the perpendicular bisector plane of the segment $A B$ is a plane of symmetry for S. Prove that if a completely symmetric set is finite, then it consists of the vertices of either a regular polygon, or a regular tetrahedron or a regular octahedron.

2 Let $n \geq 2$ be a fixed integer. Find the least constant C such the inequality

$$
\sum_{i<j} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{i} x_{i}\right)^{4}
$$

holds for any $x_{1}, \ldots, x_{n} \geq 0$ (the sum on the left consists of $\binom{n}{2}$ summands). For this constant C, characterize the instances of equality.

3 Let n be an even positive integer. We say that two different cells of a $n \times n$ board are neighboring if they have a common side. Find the minimal number of cells on the $n \times n$ board that must be marked so that any cell (marked or not marked) has a marked neighboring cell.

Day 2

4 Find all the pairs of positive integers (x, p) such that p is a prime, $x \leq 2 p$ and x^{p-1} is a divisor of $(p-1)^{x}+1$.
$5 \quad$ Two circles Ω_{1} and Ω_{2} touch internally the circle Ω in M and N and the center of Ω_{2} is on Ω_{1}. The common chord of the circles Ω_{1} and Ω_{2} intersects Ω in A and B. MA and $M B$ intersects Ω_{1} in C and D. Prove that Ω_{2} is tangent to $C D$.
$6 \quad$ Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all $x, y \in \mathbb{R}$.

