Art of Problem Solving

AoPS Community

IMO 2000

www.artofproblemsolving.com/community/c3827
by Valentin Vornicu, behzad

Day 1

1 Two circles G_{1} and G_{2} intersect at two points M and N. Let $A B$ be the line tangent to these circles at A and B, respectively, so that M lies closer to $A B$ than N. Let $C D$ be the line parallel to $A B$ and passing through the point M, with C on G_{1} and D on G_{2}. Lines $A C$ and $B D$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.

2 Let a, b, c be positive real numbers so that $a b c=1$. Prove that

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq 1 .
$$

3 Let $n \geq 2$ be a positive integer and λ a positive real number. Initially there are n fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points A and B, with A to the left of B, and letting the flea from A jump over the flea from B to the point C so that $\frac{B C}{A B}=\lambda$.

Determine all values of λ such that, for any point M on the line and for any initial position of the n fleas, there exists a sequence of moves that will take them all to the position right of M.

Day 2

4 A magician has one hundred cards numbered 1 to 100 . He puts them into three boxes, a red one, a white one and a blue one, so that each box contains at least one card. A member of the audience draws two cards from two different boxes and announces the sum of numbers on those cards. Given this information, the magician locates the box from which no card has been drawn.

How many ways are there to put the cards in the three boxes so that the trick works?
$5 \quad$ Does there exist a positive integer n such that n has exactly 2000 prime divisors and n divides $2^{n}+1$?

6 Let $\mathrm{AH}_{1}, \mathrm{BH}_{2}, \mathrm{CH}_{3}$ be the altitudes of an acute angled triangle ABC . Its incircle touches the sides $B C, A C$ and $A B$ at T_{1}, T_{2} and T_{3} respectively. Consider the symmetric images of the lines
$H_{1} H_{2}, H_{2} H_{3}$ and $H_{3} H_{1}$ with respect to the lines $T_{1} T_{2}, T_{2} T_{3}$ and $T_{3} T_{1}$. Prove that these images form a triangle whose vertices lie on the incircle of $A B C$.

