Art of Problem Solving

AoPS Community

IMO 2001

www.artofproblemsolving.com/community/c3828
by orl

Day 1 July 6th
1 Consider an acute-angled triangle $A B C$. Let P be the foot of the altitude of triangle $A B C$ issuing from the vertex A, and let O be the circumcenter of triangle $A B C$. Assume that $\angle C \geq$ $\angle B+30^{\circ}$. Prove that $\angle A+\angle C O P<90^{\circ}$.

2 Prove that for all positive real numbers a, b, c,

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1 .
$$

3 Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.

Day 2 July 7th

4 Let n be an odd integer greater than 1 and let $c_{1}, c_{2}, \ldots, c_{n}$ be integers. For each permutation $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\{1,2, \ldots, n\}$, define $S(a)=\sum_{i=1}^{n} c_{i} a_{i}$. Prove that there exist permutations $a \neq b$ of $\{1,2, \ldots, n\}$ such that $n!$ is a divisor of $S(a)-S(b)$.

5 Let $A B C$ be a triangle with $\angle B A C=60^{\circ}$. Let $A P$ bisect $\angle B A C$ and let $B Q$ bisect $\angle A B C$, with P on $B C$ and Q on $A C$. If $A B+B P=A Q+Q B$, what are the angles of the triangle?

6 Let $a>b>c>d$ be positive integers and suppose that

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Prove that $a b+c d$ is not prime.

