Art of Problem Solving

## AoPS Community

## IMO 2003

www.artofproblemsolving.com/community/c3830
by iandrei, Anonymous, Fedor Petrov, sebadollahi

Day 1 July 13th
1 Let $A$ be a 101-element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in $S$ such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.
2 Determine all pairs of positive integers $(a, b)$ such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
3 Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\frac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that all the angles of the hexagon are equal.

Day 2 July 14th
4 Let $A B C D$ be a cyclic quadrilateral. Let $P, Q, R$ be the feet of the perpendiculars from $D$ to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.
$5 \quad$ Let $n$ be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers.
Prove that

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

Show that the equality holds if and only if $x_{1}, \ldots, x_{n}$ is an arithmetic sequence.
6 Let $p$ be a prime number. Prove that there exists a prime number $q$ such that for every integer $n$, the number $n^{p}-p$ is not divisible by $q$.

