AoPS Community

IMO 2004

www.artofproblemsolving.com/community/c3831
by Valentin Vornicu, darij grinberg, jmerry, Peter Scholze

Day 1 July 12th

1 1. Let $A B C$ be an acute-angled triangle with $A B \neq A C$. The circle with diameter $B C$ intersects the sides $A B$ and $A C$ at M and N respectively. Denote by O the midpoint of the side $B C$. The bisectors of the angles $\angle B A C$ and $\angle M O N$ intersect at R. Prove that the circumcircles of the triangles $B M R$ and $C N R$ have a common point lying on the side $B C$.

2 Find all polynomials f with real coefficients such that for all reals a, b, c such that $a b+b c+c a=0$ we have the following relations

$$
f(a-b)+f(b-c)+f(c-a)=2 f(a+b+c) .
$$

3 Define a "hook" to be a figure made up of six unit squares as shown below in the picture, or any of the figures obtained by applying rotations and reflections to this figure.

Determine all $m \times n$ rectangles that can be covered without gaps and without overlaps with hooks such that

- the rectangle is covered without gaps and without overlaps
- no part of a hook covers area outside the rectangle.

Day 2 July 13th
$4 \quad$ Let $n \geq 3$ be an integer. Let $t_{1}, t_{2}, \ldots, t_{n}$ be positive real numbers such that

$$
n^{2}+1>\left(t_{1}+t_{2}+\cdots+t_{n}\right)\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\cdots+\frac{1}{t_{n}}\right) .
$$

Show that t_{i}, t_{j}, t_{k} are side lengths of a triangle for all i, j, k with $1 \leq i<j<k \leq n$.

5 In a convex quadrilateral $A B C D$, the diagonal $B D$ bisects neither the angle $A B C$ nor the angle $C D A$. The point P lies inside $A B C D$ and satisfies

$$
\angle P B C=\angle D B A \quad \text { and } \quad \angle P D C=\angle B D A .
$$

Prove that $A B C D$ is a cyclic quadrilateral if and only if $A P=C P$.
6 We call a positive integer alternating if every two consecutive digits in its decimal representation are of different parity.

Find all positive integers n such that n has a multiple which is alternating.

