Art of Problem Solving

AoPS Community

IMO 2006

www.artofproblemsolving.com/community/c3833
by ZetaX, Davron, Valentin Vornicu

Day 1 July 12th
1 Let $A B C$ be triangle with incenter I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B .
$$

Show that $A P \geq A I$, and that equality holds if and only if $P=I$.
2 Let P be a regular 2006-gon. A diagonal is called good if its endpoints divide the boundary of P into two parts, each composed of an odd number of sides of P. The sides of P are also called good.
Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of P. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.

3 Determine the least real number M such that the inequality

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

holds for all real numbers a, b and c.
Day 2 July 13th
4 Determine all pairs (x, y) of integers such that

$$
1+2^{x}+2^{2 x+1}=y^{2} .
$$

5 Let $P(x)$ be a polynomial of degree $n>1$ with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x)=P(P(\ldots P(P(x)) \ldots))$, where P occurs k times. Prove that there are at most n integers t such that $Q(t)=t$.
$6 \quad$ Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.

