Art of Problem Solving

AoPS Community

IMO 2008

www.artofproblemsolving.com/community/c3835
by orl, delegat

Day 1 July 16th
1 Let H be the orthocenter of an acute-angled triangle $A B C$. The circle Γ_{A} centered at the midpoint of $B C$ and passing through H intersects the sideline $B C$ at points A_{1} and A_{2}. Similarly, define the points B_{1}, B_{2}, C_{1} and C_{2}.
Prove that the six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$ and C_{2} are concyclic.
Author: Andrey Gavrilyuk, Russia
2 (a) Prove that

$$
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1
$$

for all real numbers x, y, z, each different from 1 , and satisfying $x y z=1$.
(b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each different from 1, and satisfying $x y z=1$.

Author: Walther Janous, Austria
3 Prove that there are infinitely many positive integers n such that $n^{2}+1$ has a prime divisor greater than $2 n+\sqrt{2 n}$.

Author: Kestutis Cesnavicius, Lithuania
Day 2 July 17th
4 Find all functions $f:(0, \infty) \mapsto(0, \infty)$ (so f is a function from the positive real numbers) such that

$$
\frac{(f(w))^{2}+(f(x))^{2}}{f\left(y^{2}\right)+f\left(z^{2}\right)}=\frac{w^{2}+x^{2}}{y^{2}+z^{2}}
$$

for all positive real numbers w, x, y, z, satisfying $w x=y z$.

Author: Hojoo Lee, South Korea

$5 \quad$ Let n and k be positive integers with $k \geq n$ and $k-n$ an even number. Let $2 n$ lamps labelled 1,2 , $\ldots, 2 n$ be given, each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on).

Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off.

Let M be number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off, but where none of the lamps $n+1$ through $2 n$ is ever switched on.

Determine $\frac{N}{M}$.

Author: Bruno Le Floch and Ilia Smilga, France
6 Let $A B C D$ be a convex quadrilateral with $B A \neq B C$. Denote the incircles of triangles $A B C$ and $A D C$ by ω_{1} and ω_{2} respectively. Suppose that there exists a circle ω tangent to ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to the lines $A D$ and $C D$. Prove that the common external tangents to ω_{1} and ω_{2} intersect on ω.

Author: Vladimir Shmarov, Russia

