

AoPS Community

2008 IMO

IMO 2008

www.artofproblemsolving.com/community/c3835 by orl, delegat

Day 1 July 16th

1 Let *H* be the orthocenter of an acute-angled triangle *ABC*. The circle Γ_A centered at the midpoint of *BC* and passing through *H* intersects the sideline *BC* at points A_1 and A_2 . Similarly, define the points B_1 , B_2 , C_1 and C_2 .

Prove that the six points A_1 , A_2 , B_1 , B_2 , C_1 and C_2 are concyclic.

Author: Andrey Gavrilyuk, Russia

2 (a) Prove that

$$\frac{x^2}{(x-1)^2} + \frac{y^2}{(y-1)^2} + \frac{z^2}{(z-1)^2} \ge 1$$

for all real numbers x, y, z, each different from 1, and satisfying xyz = 1.

(b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each different from 1, and satisfying xyz = 1.

Author: Walther Janous, Austria

3 Prove that there are infinitely many positive integers n such that $n^2 + 1$ has a prime divisor greater than $2n + \sqrt{2n}$.

Author: Kestutis Cesnavicius, Lithuania

Day 2 July 17th

4 Find all functions $f: (0,\infty) \mapsto (0,\infty)$ (so f is a function from the positive real numbers) such that

$$\frac{(f(w))^2 + (f(x))^2}{f(y^2) + f(z^2)} = \frac{w^2 + x^2}{y^2 + z^2}$$

for all positive real numbers w, x, y, z, satisfying wx = yz.

Author: Hojoo Lee, South Korea

5 Let n and k be positive integers with $k \ge n$ and k-n an even number. Let 2n lamps labelled 1, 2, ..., 2n be given, each of which can be either *on* or *off*. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on).

AoPS Community

Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n are all on, and lamps n + 1 through 2n are all off.

Let M be number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on, and lamps n+1 through 2n are all off, but where none of the lamps n+1 through 2n is ever switched on.

Determine $\frac{N}{M}$.

Author: Bruno Le Floch and Ilia Smilga, France

6 Let ABCD be a convex quadrilateral with $BA \neq BC$. Denote the incircles of triangles ABCand ADC by ω_1 and ω_2 respectively. Suppose that there exists a circle ω tangent to ray BAbeyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to ω_1 and ω_2 intersect on ω .

Author: Vladimir Shmarov, Russia

AoPS Online 🏟 AoPS Academy 🕸 AoPS &