AoPS Community

IMO 2009

www.artofproblemsolving.com/community/c3836
by orl, ZetaX

Day 1 July 15th
1 Let n be a positive integer and let $a_{1}, a_{2}, a_{3}, \ldots, a_{k}(k \geq 2)$ be distinct integers in the set $1,2, \ldots, n$ such that n divides $a_{i}\left(a_{i+1}-1\right)$ for $i=1,2, \ldots, k-1$. Prove that n does not divide $a_{k}\left(a_{1}-1\right)$.

Proposed by Ross Atkins, Australia

2 Let $A B C$ be a triangle with circumcentre O. The points P and Q are interior points of the sides $C A$ and $A B$ respectively. Let K, L and M be the midpoints of the segments $B P, C Q$ and $P Q$. respectively, and let Γ be the circle passing through K, L and M. Suppose that the line $P Q$ is tangent to the circle Γ. Prove that $O P=O Q$.

Proposed by Sergei Berlov, Russia

3 Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the sub-sequences

$$
s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots \quad \text { and } \quad s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots
$$

are both arithmetic progressions. Prove that the sequence $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.

Proposed by Gabriel Carroll, USA
Day 2 July 16th
4 Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of $\angle C A B$ and $\angle A B C$ meet the sides $B C$ and $C A$ at D and E, respectively. Let K be the incentre of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle C A B$.

Jan Vonk, Belgium, Peter Vandendriessche, Belgium and Hojoo Lee, Korea
5 Determine all functions f from the set of positive integers to the set of positive integers such that, for all positive integers a and b, there exists a non-degenerate triangle with sides of lengths

$$
a, f(b) \text { and } f(b+f(a)-1)
$$

(A triangle is non-degenerate if its vertices are not collinear.)

Proposed by Bruno Le Floch, France

6 Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers and let M be a set of $n-1$ positive integers not containing $s=a_{1}+a_{2}+\ldots+a_{n}$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths $a_{1}, a_{2}, \ldots, a_{n}$ in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

Proposed by Dmitry Khramtsov, Russia

