

AoPS Community

IMO 2009

www.artofproblemsolving.com/community/c3836 by orl, ZetaX

Day 1 July 15th

1 Let *n* be a positive integer and let $a_1, a_2, a_3, \ldots, a_k$ $(k \ge 2)$ be distinct integers in the set $1, 2, \ldots, n$ such that *n* divides $a_i(a_{i+1} - 1)$ for $i = 1, 2, \ldots, k - 1$. Prove that *n* does not divide $a_k(a_1 - 1)$.

Proposed by Ross Atkins, Australia

2 Let *ABC* be a triangle with circumcentre *O*. The points *P* and *Q* are interior points of the sides *CA* and *AB* respectively. Let *K*, *L* and *M* be the midpoints of the segments *BP*, *CQ* and *PQ*. respectively, and let Γ be the circle passing through *K*, *L* and *M*. Suppose that the line *PQ* is tangent to the circle Γ . Prove that OP = OQ.

Proposed by Sergei Berlov, Russia

3 Suppose that s_1, s_2, s_3, \ldots is a strictly increasing sequence of positive integers such that the sub-sequences

 $s_{s_1}, s_{s_2}, s_{s_3}, \ldots$ and $s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \ldots$

are both arithmetic progressions. Prove that the sequence s_1, s_2, s_3, \ldots is itself an arithmetic progression.

Proposed by Gabriel Carroll, USA

Day 2 July 16th

4 Let *ABC* be a triangle with AB = AC. The angle bisectors of $\angle CAB$ and $\angle ABC$ meet the sides *BC* and *CA* at *D* and *E*, respectively. Let *K* be the incentre of triangle *ADC*. Suppose that $\angle BEK = 45^{\circ}$. Find all possible values of $\angle CAB$.

Jan Vonk, Belgium, Peter Vandendriessche, Belgium and Hojoo Lee, Korea

5 Determine all functions *f* from the set of positive integers to the set of positive integers such that, for all positive integers *a* and *b*, there exists a non-degenerate triangle with sides of lengths

a, f(b) and f(b + f(a) - 1).

(A triangle is non-degenerate if its vertices are not collinear.)

2009 IMO

AoPS Community

2009 IMO

Proposed by Bruno Le Floch, France

6 Let a_1, a_2, \ldots, a_n be distinct positive integers and let M be a set of n - 1 positive integers not containing $s = a_1 + a_2 + \ldots + a_n$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths a_1, a_2, \ldots, a_n in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

Proposed by Dmitry Khramtsov, Russia

Act of Problem Solving is an ACS WASC Accredited School.