

AoPS Community

IMO 2010

www.artofproblemsolving.com/community/c3837 by canada, orl, mavropnevma

Day 1

1Find all function $f : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$ the following equality holds $f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$ where $\lfloor a \rfloor$ is greatest integer not greater than a.*Proposed by Pierre Bornsztein, France*2**2**Given a triangle *ABC*, with *I* as its incenter and Γ as its circumcircle, *AI* intersects Γ again at
D. Let *E* be a point on the arc *BDC*, and *F* a point on the segment *BC*, such that $\angle BAF =$
 $\angle CAE < \frac{1}{2} \angle BAC$. If *G* is the midpoint of *IF*, prove that the meeting point of the lines *EI* and
DG lies on Γ .*Proposed by Tai Wai Ming and Wang Chongli, Hong Kong*

3 Find all functions $g : \mathbb{N} \to \mathbb{N}$ such that

(g(m) + n) (g(n) + m)

is a perfect square for all $m, n \in \mathbb{N}$.

Proposed by Gabriel Carroll, USA

Day 2

4 Let *P* be a point interior to triangle *ABC* (with $CA \neq CB$). The lines *AP*, *BP* and *CP* meet again its circumcircle Γ at *K*, *L*, respectively *M*. The tangent line at *C* to Γ meets the line *AB* at *S*. Show that from SC = SP follows MK = ML.

Proposed by Marcin E. Kuczma, Poland

5 Each of the six boxes B_1 , B_2 , B_3 , B_4 , B_5 , B_6 initially contains one coin. The following operations are allowed

Type 1) Choose a non-empty box B_j , $1 \le j \le 5$, remove one coin from B_j and add two coins to B_{j+1} ;

Type 2) Choose a non-empty box B_k , $1 \le k \le 4$, remove one coin from B_k and swap the contents (maybe empty) of the boxes B_{k+1} and B_{k+2} .

2010 IMO

AoPS Community

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes B_1 , B_2 , B_3 , B_4 , B_5 become empty, while box B_6 contains exactly $2010^{2010^{2010}}$ coins.

Proposed by Hans Zantema, Netherlands

6 Let a_1, a_2, a_3, \ldots be a sequence of positive real numbers, and s be a positive integer, such that

 $a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n-1\}$ for all n > s.

Prove there exist positive integers $\ell \leq s$ and N, such that

$$a_n = a_\ell + a_{n-\ell}$$
 for all $n \ge N$.

Proposed by Morteza Saghafiyan, Iran

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.