AoPS Community

IMO 2010

www.artofproblemsolving.com/community/c3837
by canada, orl, mavropnevma

Day 1

1 Find all function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$ the following equality holds

$$
f(\lfloor x\rfloor y)=f(x)\lfloor f(y)\rfloor
$$

where $\lfloor a\rfloor$ is greatest integer not greater than a.
Proposed by Pierre Bornsztein, France
2 Given a triangle $A B C$, with I as its incenter and Γ as its circumcircle, $A I$ intersects Γ again at D. Let E be a point on the arc $B D C$, and F a point on the segment $B C$, such that $\angle B A F=$ $\angle C A E<\frac{1}{2} \angle B A C$. If G is the midpoint of $I F$, prove that the meeting point of the lines $E I$ and $D G$ lies on Γ.

Proposed by Tai Wai Ming and Wang Chongli, Hong Kong
$3 \quad$ Find all functions $g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
(g(m)+n)(g(n)+m)
$$

is a perfect square for all $m, n \in \mathbb{N}$.
Proposed by Gabriel Carroll, USA

Day 2

4 Let P be a point interior to triangle $A B C$ (with $C A \neq C B$). The lines $A P, B P$ and $C P$ meet again its circumcircle Γ at K, L, respectively M. The tangent line at C to Γ meets the line $A B$ at S. Show that from $S C=S P$ follows $M K=M L$.

Proposed by Marcin E. Kuczma, Poland
5 Each of the six boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ initially contains one coin. The following operations are allowed

Type 1) Choose a non-empty box $B_{j}, 1 \leq j \leq 5$, remove one coin from B_{j} and add two coins to B_{j+1};

Type 2) Choose a non-empty box $B_{k}, 1 \leq k \leq 4$, remove one coin from B_{k} and swap the contents (maybe empty) of the boxes B_{k+1} and B_{k+2}.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ become empty, while box B_{6} contains exactly $2010^{2010^{2010}}$ coins.
Proposed by Hans Zantema, Netherlands
6 Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive real numbers, and s be a positive integer, such that

$$
a_{n}=\max \left\{a_{k}+a_{n-k} \mid 1 \leq k \leq n-1\right\} \text { for all } n>s
$$

Prove there exist positive integers $\ell \leq s$ and N, such that

$$
a_{n}=a_{\ell}+a_{n-\ell} \text { for all } n \geq N
$$

Proposed by Morteza Saghafiyan, Iran

