Art of Problem Solving

## IMO 2012

www.artofproblemsolving.com/community/c3839
by SpectralS, delegat, teps, mathmdmb, Tonci

Day 1 July 10th
1 Given triangle $A B C$ the point $J$ is the centre of the excircle opposite the vertex $A$. This excircle is tangent to the side $B C$ at $M$, and to the lines $A B$ and $A C$ at $K$ and $L$, respectively. The lines $L M$ and $B J$ meet at $F$, and the lines $K M$ and $C J$ meet at $G$. Let $S$ be the point of intersection of the lines $A F$ and $B C$, and let $T$ be the point of intersection of the lines $A G$ and $B C$. Prove that $M$ is the midpoint of $S T$.
(The excircle of $A B C$ opposite the vertex $A$ is the circle that is tangent to the line segment $B C$, to the ray $A B$ beyond $B$, and to the ray $A C$ beyond $C$.)
Proposed by Evangelos Psychas, Greece
2 Let $n \geq 3$ be an integer, and let $a_{2}, a_{3}, \ldots, a_{n}$ be positive real numbers such that $a_{2} a_{3} \cdots a_{n}=1$. Prove that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n}>n^{n} .
$$

## Proposed by Angelo Di Pasquale, Australia

3 The liar's guessing game is a game played between two players $A$ and $B$. The rules of the game depend on two positive integers $k$ and $n$ which are known to both players.

At the start of the game $A$ chooses integers $x$ and $N$ with $1 \leq x \leq N$. Player $A$ keeps $x$ secret, and truthfully tells $N$ to player $B$. Player $B$ now tries to obtain information about $x$ by asking player $A$ questions as follows: each question consists of $B$ specifying an arbitrary set $S$ of positive integers (possibly one specified in some previous question), and asking $A$ whether $x$ belongs to $S$. Player $B$ may ask as many questions as he wishes. After each question, player A must immediately answer it with yes or no, but is allowed to lie as many times as she wants; the only restriction is that, among any $k+1$ consecutive answers, at least one answer must be truthful.

After $B$ has asked as many questions as he wants, he must specify a set $X$ of at most $n$ positive integers. If $x$ belongs to $X$, then $B$ wins; otherwise, he loses. Prove that:

1. If $n \geq 2^{k}$, then $B$ can guarantee a win.
2. For all sufficiently large $k$, there exists an integer $n \geq(1.99)^{k}$ such that $B$ cannot guarantee a win.

Proposed by David Arthur, Canada

Day 2 July 11th
4 Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers $a, b, c$ that satisfy $a+b+c=0$, the following equality holds:

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a)
$$

(Here $\mathbb{Z}$ denotes the set of integers.)
Proposed by Liam Baker, South Africa
5 Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let $D$ be the foot of the altitude from $C$. Let $X$ be a point in the interior of the segment $C D$. Let $K$ be the point on the segment $A X$ such that $B K=B C$. Similarly, let $L$ be the point on the segment $B X$ such that $A L=A C$. Let $M$ be the point of intersection of $A L$ and $B K$.
Show that $M K=M L$.

## Proposed by Josef Tkadlec, Czech Republic

6 Find all positive integers $n$ for which there exist non-negative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1 .
$$

Proposed by Dusan Djukic, Serbia

