Art of Problem Solving

IMO 2013

www.artofproblemsolving.com/community/c3840
by liberator, PersonPsychopath, jlammy

Day 1 July 23rd
1 Assume that k and n are two positive integers. Prove that there exist positive integers m_{1}, \ldots, m_{k} such that

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right) \cdots\left(1+\frac{1}{m_{k}}\right) .
$$

Proposed by Japan
2 A configuration of 4027 points in the plane is called Colombian if it consists of 2013 red points and 2014 blue points, and no three of the points of the configuration are collinear. By drawing some lines, the plane is divided into several regions. An arrangement of lines is good for a Colombian configuration if the following two conditions are satisfied:
i) No line passes through any point of the configuration.
ii) No region contains points of both colors.

Find the least value of k such that for any Colombian configuration of 4027 points, there is a good arrangement of k lines.

Proposed by Ivan Guo from Australia.
3 Let the excircle of triangle $A B C$ opposite the vertex A be tangent to the side $B C$ at the point A_{1}. Define the points B_{1} on $C A$ and C_{1} on $A B$ analogously, using the excircles opposite B and C, respectively. Suppose that the circumcentre of triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of triangle $A B C$. Prove that triangle $A B C$ is right-angled.

Proposed by Alexander A. Polyansky, Russia
Day 2 July 24th
4 Let $A B C$ be an acute triangle with orthocenter H, and let W be a point on the side $B C$, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_{1} is the circumcircle of $B W N$, and let X be the point on ω_{1} such that $W X$ is a diameter of ω_{1}. Analogously, denote by ω_{2} the circumcircle of triangle $C W M$, and let Y be the point such that $W Y$ is a diameter of ω_{2}. Prove that X, Y and H are collinear.

Proposed by Warut Suksompong and Potcharapol Suteparuk, Thailand
$5 \quad$ Let $\mathbb{Q}_{>0}$ be the set of all positive rational numbers. Let $f: \mathbb{Q}>0 \rightarrow \mathbb{R}$ be a function satisfying the following three conditions:
(i) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x) f(y) \geq f(x y)$;
(ii) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x+y) \geq f(x)+f(y)$;
(iii) there exists a rational number $a>1$ such that $f(a)=a$.

Prove that $f(x)=x$ for all $x \in \mathbb{Q}>0$.

Proposed by Bulgaria

6 Let $n \geq 3$ be an integer, and consider a circle with $n+1$ equally spaced points marked on it. Consider all labellings of these points with the numbers $0,1, \ldots, n$ such that each label is used exactly once; two such labellings are considered to be the same if one can be obtained from the other by a rotation of the circle. A labelling is called beautiful if, for any four labels $a<b<c<d$ with $a+d=b+c$, the chord joining the points labelled a and d does not intersect the chord joining the points labelled b and c.

Let M be the number of beautiful labelings, and let \mathbf{N} be the number of ordered pairs (x, y) of positive integers such that $x+y \leq n$ and $\operatorname{gcd}(x, y)=1$. Prove that

$$
M=N+1 .
$$

