AoPS Community

IMO 2014

www.artofproblemsolving.com/community/c3841
by Amir Hossein, v_Enhance, ipaper, codyj, IMO2018

Day 1 July 8th
1 Let $a_{0}<a_{1}<a_{2}<\ldots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n \geq 1$ such that

$$
a_{n}<\frac{a_{0}+a_{1}+a_{2}+\cdots+a_{n}}{n} \leq a_{n+1} .
$$

Proposed by Gerhard Wöginger, Austria.
2 Let $n \geq 2$ be an integer. Consider an $n \times n$ chessboard consisting of n^{2} unit squares. A configuration of n rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive integer k such that, for each peaceful configuration of n rooks, there is a $k \times k$ square which does not contain a rook on any of its k^{2} unit squares.

3 Convex quadrilateral $A B C D$ has $\angle A B C=\angle C D A=90^{\circ}$. Point H is the foot of the perpendicular from A to $B D$. Points S and T lie on sides $A B$ and $A D$, respectively, such that H lies inside triangle $S C T$ and

$$
\angle C H S-\angle C S B=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Prove that line $B D$ is tangent to the circumcircle of triangle $T S H$.

Day 2 July 9th

4 Let P and Q be on segment $B C$ of an acute triangle $A B C$ such that $\angle P A B=\angle B C A$ and $\angle C A Q=\angle A B C$. Let M and N be the points on $A P$ and $A Q$, respectively, such that P is the midpoint of $A M$ and Q is the midpoint of $A N$. Prove that the intersection of $B M$ and $C N$ is on the circumference of triangle $A B C$.

Proposed by Giorgi Arabidze, Georgia.
5 For each positive integer n, the Bank of Cape Town issues coins of denomination $\frac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most most $99+\frac{1}{2}$, prove that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most 1 .

6 A set of lines in the plane is in general position if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which
have finite area; we call these its finite regions. Prove that for all sufficiently large n, in any set of n lines in general position it is possible to colour at least \sqrt{n} lines blue in such a way that none of its finite regions has a completely blue boundary.

Note: Results with \sqrt{n} replaced by $c \sqrt{n}$ will be awarded points depending on the value of the constant c.

