

AoPS Community

IMO 2014

www.artofproblemsolving.com/community/c3841 by Amir Hossein, v_Enhance, ipaper, codyj, IMO2018

Day 1 July 8th

1 Let $a_0 < a_1 < a_2 < ...$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n \ge 1$ such that

$$a_n < \frac{a_0 + a_1 + a_2 + \dots + a_n}{n} \le a_{n+1}.$$

Proposed by Gerhard Wöginger, Austria.

- 2 Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of n^2 unit squares. A configuration of n rooks on this board is *peaceful* if every row and every column contains exactly one rook. Find the greatest positive integer k such that, for each peaceful configuration of n rooks, there is a $k \times k$ square which does not contain a rook on any of its k^2 unit squares.
- **3** Convex quadrilateral ABCD has $\angle ABC = \angle CDA = 90^{\circ}$. Point *H* is the foot of the perpendicular from *A* to *BD*. Points *S* and *T* lie on sides *AB* and *AD*, respectively, such that *H* lies inside triangle *SCT* and

 $\angle CHS - \angle CSB = 90^\circ, \quad \angle THC - \angle DTC = 90^\circ.$

Prove that line BD is tangent to the circumcircle of triangle TSH.

Day 2 July 9th

4 Let *P* and *Q* be on segment *BC* of an acute triangle *ABC* such that $\angle PAB = \angle BCA$ and $\angle CAQ = \angle ABC$. Let *M* and *N* be the points on *AP* and *AQ*, respectively, such that *P* is the midpoint of *AM* and *Q* is the midpoint of *AN*. Prove that the intersection of *BM* and *CN* is on the circumference of triangle *ABC*.

Proposed by Giorgi Arabidze, Georgia.

- **5** For each positive integer n, the Bank of Cape Town issues coins of denomination $\frac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most most $99 + \frac{1}{2}$, prove that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most 1.
- **6** A set of lines in the plane is in *general position* if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which

2014 IMO

AoPS Community

2014 IMO

have finite area; we call these its *finite regions*. Prove that for all sufficiently large n, in any set of n lines in general position it is possible to colour at least \sqrt{n} lines blue in such a way that none of its finite regions has a completely blue boundary.

Note: Results with \sqrt{n} replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant *c*.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱 🙀