AoPS Community

Georgia Team Selection Test 2005

www.artofproblemsolving.com/community/c3842
by lasha

Day 1 May 7th

1 1. The transformation $n \rightarrow 2 n-1$ or $n \rightarrow 3 n-1$, where n is a positive integer, is called the 'change' of n. Numbers a and b are called 'similar', if there exists such positive integer, that can be got by finite number of 'changes' from both a and b. Find all positive integers 'similar' to 2005 and less than 2005.

2 In triangle $A B C$ we have $\angle A C B=2 \angle A B C$ and there exists the point D inside the triangle such that $A D=A C$ and $D B=D C$. Prove that $\angle B A C=3 \angle B A D$.

3 Let x, y, z be positive real numbers,satisfying equality $x^{2}+y^{2}+z^{2}=25$. Find the minimal possible value of the expression $\frac{x y}{z}+\frac{y z}{x}+\frac{z x}{y}$.

Day 2 May 8th

4 Find all polynomials with real coefficients, for which the equality

$$
P(2 P(x))=2 P(P(x))+2(P(x))^{2}
$$

holds for any real number x.
$5 \quad$ Let $A B C D$ be a convex quadrilateral. Points P, Q and R are the feets of the perpendiculars from point D to lines $B C, C A$ and $A B$, respectively. Prove that $P Q=Q R$ if and only if the bisectors of the angles $A B C$ and $A D C$ meet on segment $A C$.

6 Let A be the subset of the set of positive integers, having the following 2 properties:

1) If a belong to A, than all of the divisors of a also belong to A;
2) If a and $b, 1<a<b$, belong to A, than $1+a b$ is also in A;

Prove that if A contains at least 3 positive integers, than A contains all positive integers.

Day 3 May 14th

7 Determine all positive integers n, for which $2^{n-1} n+1$ is a perfect square.
$8 \quad$ In a convex quadrilateral $A B C D$ the points P and Q are chosen on the sides $B C$ and $C D$ respectively so that $\angle B A P=\angle D A Q$. Prove that the line, passing through the orthocenters of triangles $A B P$ and $A D Q$, is perpendicular to $A C$ if and only if the triangles $A B P$ and $A D Q$ have the same areas.

9 Let $a_{0}, a_{1}, \ldots, a_{n}$ be integers, one of which is nonzero, and all of the numbers are not less than -1 . Prove that if

$$
a_{0}+2 a_{1}+2^{2} a_{2}+\cdots+2^{n} a_{n}=0,
$$

then $a_{0}+a_{1}+\cdots+a_{n}>0$.
Day 4 May 15 th
10 Let a, b, c be positive numbers, satisfying $a b c \geq 1$. Prove that

$$
a^{3}+b^{3}+c^{3} \geq a b+b c+c a
$$

11 On the sides $A B, B C, C D$ and $D A$ of the rhombus $A B C D$, respectively, are chosen points E, F, G and H so, that $E F$ and $G H$ touch the incircle of the rhombus. Prove that the lines $E H$ and $F G$ are parallel.

1230 students participated in the mathematical Olympiad. Each of them was given 8 problems to solve. Jury estimated their work with the following rule:

1) Each problem was worth k points, if it wasn't solved by exactly k students;
2) Each student received the maximum possible points in each problem or got 0 in it; Lasha got the least number of points. What's the maximal number of points he could have? Remark: 1) means that if the problem was solved by exactly k students, than each of them got $30-k$ points in it.
