

AoPS Community

2005 Argentina Team Selection Test

Argentina Team Selection Test 2005

www.artofproblemsolving.com/community/c3843 by RaMlaF, lambruscokid, drase

Day 1

1	Find all pairs of integers (m, n) such that an $m \times n$ board can be totally covered with 1×3 and 2×5 pieces.
2	Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $\forall x, y \in \mathbb{R}$ we have
	$f(xf(x) + f(y)) = f(x)^2 + y$
3	Given the triangle ABC we consider the points X, Y, Z such that the triangles ABZ, BCX, CAZ are equilateral, and they don't have intersection with ABC . Let B' be the midpoint of BC, N' the midpoint of CY , and M, N the midpoints of AZ, CX , respectively. Prove that $B'N' \perp MN$.
Day 2	
1	We have 150 numbers $x_1, x_2, \cdots, x_{150}$ each of which is either $\sqrt{2} + 1$ or $\sqrt{2} - 1$
	We calculate the following sum:
	$S = x_1 x_2 + x_3 x_4 + x_5 x_6 + \dots + x_{149} x_{150}$
	Can we choose the 150 numbers such that $S = 121$? And what about $S = 111$?
2	Let n, p be integers such that $n > 1$ and p is a prime. If $n \mid p - 1$ and $p \mid n^3 - 1$, show that $4p - 3$ is a perfect square.
3	We say that a group of k boys is $n - acceptable$ if removing any boy from the group one can always find, in the other $k - 1$ group, a group of n boys such that everyone knows each other. For each n , find the biggest k such that in any group of k boys that is $n - acceptable$ we must always have a group of $n + 1$ boys such that everyone knows each other.

Act of Problem Solving is an ACS WASC Accredited School.