

AoPS Community

2007 Argentina Team Selection Test

Argentina Team Selection Test 2007

www.artofproblemsolving.com/community/c3845 by lambruscokid, darij grinberg

Day 1

1	Let X, Y, Z be distinct positive integers having exactly two digits in such a way that: X = 10a + b Y = 10b + c Z = 10c + a
	(a, b, c are digits)
	Find all posible values of $gcd(X, Y, Z)$
2	Let $ABCD$ be a trapezium of parallel sides AD and BC and non-parallel sides AB and CD Let I be the incenter of ABC . It is known that exists a point $Q \in AD$ with $Q \neq A$ and $Q \neq D$ such that if P is a point of the intersection of the bisectors of \widehat{CQD} and \widehat{CAD} then $PI \parallel AD$ Prove that $PI = BQ$
3	A 3000×3000 square is tiled by dominoes (i. e. 1×2 rectangles) in an arbitrary way. Show that one can color the dominoes in three colors such that the number of the dominoes of each color is the same, and each dominoe d has at most two neighbours of the same color as d . (Two dominoes are said to be <i>neighbours</i> if a cell of one domino has a common edge with a cell of the other one.)
Day	2
4	Find all real values of $x > 1$ which satisfy: $\frac{x^2}{x-1} + \sqrt{x-1} + \frac{\sqrt{x-1}}{x^2} = \frac{x-1}{x^2} + \frac{1}{\sqrt{x-1}} + \frac{x^2}{\sqrt{x-1}}$
5	Let d_1, d_2, \ldots, d_r be the positive divisors of $n \ 1 = d_1 < d_2 < \ldots < d_r = n$ If $(d_7)^2 + (d_{15})^2 = (d_{16})^2$ find all posible values of d_{17}
6	For natural <i>n</i> we define $s(n)$ as the sum of digits of <i>n</i> (in base ten) Does there exist a positive real constant <i>c</i> such that for all natural <i>n</i> we have $\frac{s(n)}{s(n^2)} \leq c$?

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY