AoPS Community

Argentina Team Selection Test 2007

www.artofproblemsolving.com/community/c3845
by lambruscokid, darij grinberg

Day 1

1 Let X, Y, Z be distinct positive integers having exactly two digits in such a way that:
$X=10 a+b Y=10 b+c Z=10 c+a$
(a, b, c are digits)
Find all posible values of $\operatorname{gcd}(X, Y, Z)$
2 Let $A B C D$ be a trapezium of parallel sides $A D$ and $B C$ and non-parallel sides $A B$ and $C D$ Let I be the incenter of $A B C$. It is known that exists a point $Q \in A D$ with $Q \neq A$ and $Q \neq D$ such that if P is a point of the intersection of the bisectors of $\widehat{C Q D}$ and $\widehat{C A D}$ then $P I \| A D$ Prove that $P I=B Q$

3 A 3000×3000 square is tiled by dominoes (i. e. 1×2 rectangles) in an arbitrary way. Show that one can color the dominoes in three colors such that the number of the dominoes of each color is the same, and each dominoe d has at most two neighbours of the same color as d. (Two dominoes are said to be neighbours if a cell of one domino has a common edge with a cell of the other one.)

Day 2

$4 \quad$ Find all real values of $x>1$ which satisfy:
$\frac{x^{2}}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^{2}}=\frac{x-1}{x^{2}}+\frac{1}{\sqrt{x-1}}+\frac{x^{2}}{\sqrt{x-1}}$
5 Let $d_{1}, d_{2} \ldots, d_{r}$ be the positive divisors of $n 1=d_{1}<d_{2}<\ldots<d_{r}=n$ If $\left(d_{7}\right)^{2}+\left(d_{15}\right)^{2}=\left(d_{16}\right)^{2}$ find all posible values of d_{17}
$6 \quad$ For natural n we define $s(n)$ as the sum of digits of n (in base ten)
Does there exist a positive real constant c such that for all natural n we have
$\frac{s(n)}{s\left(n^{2}\right)} \leq c$?

