

AoPS Community

2008 Argentina Team Selection Test

Argentina Team Selection Test 2008

www.artofproblemsolving.com/community/c3846 by lambruscokid, Allnames, hungkhtn

Day 1	
1	In the vertexes of a regular 100-gon we place the numbers from 1 to 100, in some order, every number appearing exactly once. We say that an arrangment of the numbers is happy if for every simmetry axis of the polygon, the numbers which are from one side of the axis are greater that their respective simmetrics (we don't take into consideration the numbers which are on the axis) Find all happy arrangments (If two happy arrangments are the same under the rotation they are considered as only one)
2	Triangle <i>ABC</i> is inscript in a circumference Γ . A chord $MN = 1$ of Γ intersects the sides <i>AB</i> and <i>AC</i> at <i>X</i> and <i>Y</i> respectively, with <i>M</i> , <i>X</i> , <i>Y</i> , <i>N</i> in that order in <i>MN</i> . Let <i>UV</i> be the diameter of Γ perpendicular to <i>MN</i> with <i>U</i> and <i>A</i> in the same semiplane respect to <i>MN</i> . Lines <i>AV</i> , <i>BU</i> and <i>CU</i> cut <i>MN</i> in the ratios $\frac{3}{2}$, $\frac{4}{5}$ and $\frac{7}{6}$ respectively (starting counting from <i>M</i>). Find <i>XY</i>
3	-Find all the functions from $\mathbb{R}^+ \to \mathbb{R}^+$ that satisfy: $x^2(f(x) + f(y)) = (x + y)(f(yf(x)))$
Day 2	
4	Let $d(n)$ be the number of positive divisors of the natural number n . Find all n such that $\frac{n}{d(n)} = p$ where p is a prime number
	Daniel
5	Let ABC be a triangle, D , E and F the points of tangency of the incircle with sides BC , CA , AB respectively. Let P be the second point of intersection of CF and the incircle. If $ABPE$ is a cyclic quadrilateral prove that DP is parellel to AB
6	Show that in acute triangle ABC we have: $\frac{a^5+b^5+c^5}{a^4+b^4+c^4} \ge \sqrt{3}R$

AoPS Online 🔯 AoPS Academy 🔯 AoPS &