AoPS Community

Stanford Mathematics Tournament 2008

www.artofproblemsolving.com/community/c3861
by augustin_p, parmenides51, phiReKaLk6781

- Team
- p1. Find the maximum value of $e^{\sin x \cos x \tan x}$.
p2. A fighter pilot finds that the average number of enemy ZIG planes she shoots down is $56 z-$ $4 z^{2}$, where z is the number of missiles she fires. Intending to maximize the number of planes she shoots down, she orders her gunner to "Have a nap ... then fire z missiles!" where z is an integer. What should z be?
p3. A sequence is generated as follows: if the $n^{t h}$ term is even, then the $(n+1)^{t h}$ term is half the $n^{\text {th }}$ term; otherwise it is two more than twice the $n^{\text {th }}$ term. If the first term is 10 , what is the $2008^{\text {th }}$ term?
p4. Find the volume of the solid formed by rotating the area under the graph of $y=\sqrt{x}$ around the x-axis, with $0 \leq x \leq 2$.
p5. Find the volume of a regular octahedron whose vertices are at the centers of the faces of a unit cube.
p6. What is the area of the triangle with vertices $(x, 0,0),(0, y, 0)$, and $(0,0, z)$?
p7. Daphne is in a maze of tunnels shown below. She enters at A, and at each intersection, chooses a direction randomly (including possibly turning around). Once Daphne reaches an exit, she will not return into the tunnels. What is the probability that she will exit at A ? https://cdn.artofproblemsolving.com/attachments/c/0/0f8777e9ac9cbe302f042d040e8864d68cadh png
p8. In triangle $A X E, T$ is the midpoint of $\overline{E X}$, and P is the midpoint of $\overline{E T}$. If triangle $A P E$ is equilateral, find $\cos (m \angle X A E)$.
p9. In rectangle $X K C D, J$ lies on $\overline{K C}$ and Z lies on $\overline{X K}$. If $\overline{X J}$ and $\overline{K D}$ intersect at $Q, \overline{Q Z} \perp$ $\overline{X K}$, and $\frac{K C}{K J}=n$, find $\frac{X D}{Q Z}$.
p10. Bill the magician has cards A, B, and C as shown. For his act, he asks a volunteer to pick any number from 1 through 8 and tell him which cards among A, B, and C contain it. He then uses this information to guess the volunteer's number (for example, if the volunteer told Bill " A and $C^{\prime \prime}$, he would guess " 3 ").
One day, Bill loses card C and cannot remember which numbers were on it. He is in a hurry and randomly chooses four different numbers from 1 to 8 to write on a card. What is the probability Bill will still be able to do his trick?

A: 2357
B: 2467
$C: 2361$
p11. Given that $f(x, y)=x^{7} y^{8}+x^{4} y^{14}+A$ has root $(16,7)$, find another root.
p12. How many nonrectangular trapezoids can be formed from the vertices of a regular octagon?
p13. If $r e^{i \theta}$ is a root of $x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1=0, r>0$, and $0 \leq \theta<360$ with θ in degrees, find all possible values of θ.
p14. For what real values of n is $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\tan (x))^{n} d x$ defined?
p15. A parametric graph is given by

$$
\left\{\begin{array}{l}
y=\sin t \\
x=\cos t+\frac{1}{2} t
\end{array}\right.
$$

How many times does the graph intersect itself between $x=1$ and $x=40$?

PS. You had better use hide for answers.

- \quad February 23rd

1 Calculate the least integer greater than $5^{(-6)(-5)(-4) \ldots(2)(3)(4)}$.
2 How many primes exist which are less than 50?
$3 \quad$ Give the positive root(s) of $x^{3}+2 x^{2}-2 x-4$.

AoPS Community

2008 Stanford Mathematics Tournament

4 A right triangle has sides of integer length. One side has length 11. What is the area of the triangle?

5 One day, the temperature increases steadily from a low of $45^{\circ} \mathrm{F}$ in the early morning to a high of $70^{\circ} \mathrm{F}$ in the late afternoon. At how many times from early morning to late afternoon was the temperature an integer in both Fahrenheit and Celsius? Recall that $C=\frac{5}{9}(F-32)$.

6 A round pencil has length 8 when unsharpened, and diameter $\frac{1}{4}$. It is sharpened perfectly so that it remains 8 inches long, with a 7 inch section still cylindrical and the remaining 1 inch giving a conical tip. What is its volume?

7 At the Rice Mathematics Tournament, 80
8 Terence Tao is playing rock-paper-scissors. Because his mental energy is focused on solving the twin primes conjecture, he uses the following very simple strategy:
-He plays rock first.
-On each subsequent turn, he plays a different move than the previous one, each with probability $1 / 2$.

What is the probability that his 5th move will be rock?
$9 \quad$ What is the sum of the prime factors of 20!?
10 Six people play the following game: They have a cube, initially white. One by one, the players mark an X on a white face of the cube, and roll it like a die. The winner is the first person to roll an X (for example, player 1 wins with probability $\frac{1}{6}$, while if none of players $1-5$ win, player 6 will place an X on the last square and win for sure). What is the probability that the sixth player wins?

11 Simplify: $\sqrt[3]{\frac{17 \sqrt{7}+45}{4}}$
13 Let N be the number of distinct rearrangements of the 34 letters in SUPERCALIFRAGILISTICEXPIALIDOCIOUS. How many positive factors does N have?

14 Suppose families always have one, two, or three children, with probability $1 / 4, \frac{1}{2}, \frac{1}{4}$ respectively. Assuming everyone eventually gets married and has children, what is the probability of a couple having exactly four grandchildren?

15 While out for a stroll, you encounter a vicious velociraptor. You start running away to the northeast at $10 \mathrm{~m} / \mathrm{s}$, and you manage a three-second head start over the raptor. If the raptor runs at
$15 \sqrt{2} \mathrm{~m} / \mathrm{s}$, but only runs either north or east at any given time, how many seconds do you have until it devours you?

16 Suppose convex hexagon HEXAGN has 120°-rotational symmetry about a point P-that is, if you rotate it 120° about P, it doesn't change. If $P X=1$, find the area of triangle $\triangle G H X$.

