Art of Problem Solving

AoPS Community

Math Prize for Girls Problems 2016

www.artofproblemsolving.com/community/c386686
by Ravi B

1 Let T be a triangle with side lengths 3,4 , and 5 . If P is a point in or on T, what is the greatest possible sum of the distances from P to each of the three sides of T ?

2 Katrine has a bag containing 4 buttons with distinct letters M, P, F, G on them (one letter per button). She picks buttons randomly, one at a time, without replacement, until she picks the button with letter G . What is the probability that she has at least three picks and her third pick is the button with letter M ?

3 Compute the least possible value of $A B C D-A B \times C D$, where $A B C D$ is a 4-digit positive integer, and $A B$ and $C D$ are 2-digit positive integers. (Here A, B, C, and D are digits, possibly equal. Neither A nor C can be zero.)

4 Compute the smallest positive integer n such that 2016^{n} does not divide 2016!.
$5 \quad$ A permutation of a finite set S is a one-to-one function from S to S. A permutation P of the set $\{1,2,3,4,5\}$ is called a W-permutation if $P(1)>P(2)<P(3)>P(4)<P(5)$. A permutation of the set $\{1,2,3,4,5\}$ is selected at random. Compute the probability that it is a W-permutation.

6 The largest term in the binomial expansion of $\left(1+\frac{1}{2}\right)^{31}$ is of the form $\frac{a}{b}$, where a and b are relatively prime positive integers. What is the value of b ? As an example of a binomial expansion, the binomial expansion of an expression of the form $(x+y)^{3}$ is the sum of four terms

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3} .
$$

$7 \quad$ Let S be the set of all real numbers x such that $0 \leq x \leq 2016 \pi$ and $\sin x<3 \sin (x / 3)$. The set S is the union of a finite number of disjoint intervals. Compute the total length of all these intervals.
$8 \quad$ A strip is the region between two parallel lines. Let A and B be two strips in a plane. The intersection of strips A and B is a parallelogram P. Let A^{\prime} be a rotation of A in the plane by 60°. The intersection of strips A^{\prime} and B is a parallelogram with the same area as P. Let x° be the measure (in degrees) of one interior angle of P. What is the greatest possible value of the number x ?

9 How many distinct lines pass through the point (0,2016) and intersect the parabola $y=x^{2}$ at two lattice points? (A lattice point is a point whose coordinates are integers.)

2016 Math Prize for Girls Problems

10 How many solutions of the equation $\tan x=\tan \tan x$ are on the interval $0 \leq x \leq \tan ^{-1} 942$? (Here $\tan ^{-1}$ means the inverse tangent function, sometimes written arctan.)

11 Compute the number of ordered pairs of complex numbers (u, v) such that $u v=10$ and such that the real and imaginary parts of u and v are integers.

12 Let $b_{1}, b_{2}, b_{3}, c_{1}, c_{2}$, and c_{3} be real numbers such that for every real number x, we have

$$
x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1=\left(x^{2}+b_{1} x+c_{1}\right)\left(x^{2}+b_{2} x+c_{2}\right)\left(x^{2}+b_{3} x+c_{3}\right) .
$$

Compute $b_{1} c_{1}+b_{2} c_{2}+b_{3} c_{3}$.
13 Alice, Beth, Carla, Dana, and Eden play a game in which each of them simultaneously closes her eyes and randomly chooses two of the others to point at (one with each hand). A participant loses if she points at someone who points back at her; otherwise, she wins. Find the probability that all five girls win.

14 We call a set X of real numbers three-averaging if for every two distinct elements a and b of X, there exists an element c in X (different from both a and b) such that the number $(a+b+c) / 3$ also belongs to X. For instance, the set $\{0,1008,2016\}$ is three-averaging. What is the least possible number of elements in a three-averaging set with more than 3 elements?

15 Let H be a convex, equilateral heptagon whose angles measure (in degrees) $168^{\circ}, 108^{\circ}, 108^{\circ}$, $168^{\circ}, x^{\circ}, y^{\circ}$, and z° in clockwise order. Compute the number y.

16 Let $A<B<C<D$ be positive integers such that every three of them form the side lengths of an obtuse triangle. Compute the least possible value of D.

17 We define the weight W of a positive integer as follows: $W(1)=0, W(2)=1, W(p)=1+$ $W(p+1)$ for every odd prime $p, W(c)=1+W(d)$ for every composite c, where d is the greatest proper factor of c. Compute the greatest possible weight of a positive integer less than 100.

18 Let $T=\{1,2,3, \ldots, 14,15\}$. Say that a subset S of T is handy if the sum of all the elements of S is a multiple of 5 . For example, the empty set is handy (because its sum is 0) and T itself is handy (because its sum is 120). Compute the number of handy subsets of T.

19 In the coordinate plane, consider points $A=(0,0), B=(11,0)$, and $C=(18,0)$. Line ℓ_{A} has slope 1 and passes through A. Line ℓ_{B} is vertical and passes through B. Line ℓ_{C} has slope -1 and passes through C. The three lines ℓ_{A}, ℓ_{B}, and ℓ_{C} begin rotating clockwise about points A, B, and C, respectively. They rotate at the same angular rate. At any given time, the three lines form a triangle. Determine the largest possible area of such a triangle.

20 Let $a_{1}, a_{2}, a_{3}, a_{4}$, and a_{5} be random integers chosen independently and uniformly from the set $\{0,1,2, \ldots, 23\}$. (Note that the integers are not necessarily distinct.) Find the probability that

$$
\sum_{k=1}^{5} \operatorname{cis}\left(\frac{a_{k} \pi}{12}\right)=0
$$

(Here $\operatorname{cis} \theta$ means $\cos \theta+i \sin \theta$.)

