AoPS Community

National Math Olympiad (Second Round) 1983

www.artofproblemsolving.com/community/c3867
by Amir Hossein

1 Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions such that $g \circ f: \mathbb{R} \rightarrow \mathbb{R}$ is an injective function. Prove that f is also injective.

2 Prove that the number $x=\sqrt{1+\sqrt{2}}$ is irrational.
3 Find a matrix $A_{(2 \times 2)}$ for which

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right] A\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

4 The point M moves such that the sum of squares of the lengths from M to faces of a cube, is fixed. Find the locus of M.

5 Find the value of $S_{n}=\arctan \frac{1}{2}+\arctan \frac{1}{8}+\arctan \frac{1}{18}+\cdots+\arctan \frac{1}{2 n^{2}}$. Also find $\lim _{n \rightarrow \infty} S_{n}$.
6 Suppose that

$$
f(x)= \begin{cases}n, & n \in \mathbb{N}, x=\frac{1}{n} \\ x, & \text { otherwise }\end{cases}
$$

i) In which points, the function has a limit?
ii) Prove that there does not exist limit of f in the point $x=0$.

$$
7 \quad \text { Find the sum } \sum_{i=1}^{\infty} \frac{n}{2^{n}} .
$$

