AoPS Community

National Math Olympiad (Second Round) 1984

www.artofproblemsolving.com/community/c3868
by Amir Hossein

1 Let f and g be two functions such that

$$
f(x)=\frac{1}{\lfloor|x|\rfloor}, \quad g(x)=\frac{1}{\lfloor\lfloor x\rfloor \mid} .
$$

Find the domains of f and g and then prove that

$$
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} g(x) .
$$

2 Consider the function

$$
f(x)=\sin \left(\frac{\pi}{2}\lfloor x\rfloor\right) .
$$

Find the period of f and sketch diagram of f in one period. Also prove that $\lim _{x \rightarrow 1} f(x)$ does not exist.
$3 \quad$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

$$
f(x+y)=f(x) \cdot f(y) \quad \forall x, y \in \mathbb{R}
$$

Suppose that $f(0) \neq 0$ and $f(0)$ exists and it is finite $(f(0) \neq \infty)$. Prove that f has derivative in each point $x \in \mathbb{R}$.

4 Find number of terms when we expand $(a+b+c)^{99}$ (in the general case).
5 Suppose that

$$
S_{n}=\frac{5}{9} \times \frac{14}{20} \times \frac{27}{35} \times \cdots \times \frac{2 n^{2}-n-1}{2 n^{2}+n-1}
$$

Find $\lim _{n \rightarrow \infty} S_{n}$.
$6 \quad$ Let D and D^{\prime} be two lines with the equations

$$
\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{4} \quad \text { and } \quad \frac{x+1}{2}=\frac{y+2}{4}=\frac{z-1}{3} .
$$

Find the length of their common perpendicular.
$7 \quad$ Let B and C be two fixed point on the plane P. Find the locus of the points M on the plane P for which $M B^{2}+k M C^{2}=a^{2}$. (k and a are two given numbers and $k>0$.)
$8 \quad$ Define the operation \bigoplus on the set of real numbers such that

$$
x \bigoplus y=x+y-x y \quad \forall x, y \in \mathbb{R}
$$

Prove that this operation is associative.

