AoPS Community

National Math Olympiad (Second Round) 1987
www.artofproblemsolving.com/community/c3871
by Amir Hossein

Day 1

1 Solve the following system of equations in positive integers

$$
\left\{\begin{array}{c}
a^{3}-b^{3}-c^{3}=3 a b c \\
a^{2}=2(b+c)
\end{array}\right.
$$

2 Let f be a real function defined in the interval $[0,+\infty)$ and suppose that there exist two functions $f^{\prime}, f^{\prime \prime}$ in the interval $[0,+\infty)$ such that

$$
f^{\prime \prime}(x)=\frac{1}{x^{2}+f^{\prime}(x)^{2}+1} \quad \text { and } \quad f(0)=f^{\prime}(0)=0 .
$$

Let g be a function for which

$$
g(0)=0 \quad \text { and } \quad g(x)=\frac{f(x)}{x} .
$$

Prove that g is bounded.
3 In the following diagram, let $A B C D$ be a square and let M, N, P and Q be the midpoints of its sides. Prove that

$$
S_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=\frac{1}{5} S_{A B C D}
$$

[S_{X} denotes area of the X.]

Day 2

1 Calculate the product:

$$
A=\sin 1^{\circ} \times \sin 2^{\circ} \times \sin 3^{\circ} \times \cdots \times \sin 89^{\circ}
$$

2 Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}-y^{2}\right)=f(x)^{2}+f(y)^{2}, \quad \forall x, y \in \mathbb{R}
$$

3 Let $L_{1}, L_{2}, L_{3}, L_{4}$ be four lines in the space such that no three of them are in the same plane. Let L_{1}, L_{2} intersect in A, L_{2}, L_{3} intersect in B and L_{3}, L_{4} intersect in C. Find minimum and maximum number of lines in the space that intersect L_{1}, L_{2}, L_{3} and L_{4}. Justify your answer.

