

AoPS Community

2016 Mexico National Olmypiad

Mexico National Olympiad 2016

www.artofproblemsolving.com/community/c387208 by gavrilos, Math_CYCR, GovernmentCheeseAhoy, ralk912

- Day 1
- 1 Let C_1 and C_2 be two circumferences externally tangents at S such that the radius of C_2 is the triple of the radius of C_1 . Let a line be tangent to C_1 at $P \neq S$ and to C_2 at $Q \neq S$. Let T be a point on C_2 such that QT is diameter of C_2 . Let the angle bisector of $\angle SQT$ meet ST at R. Prove that QR = RT
- **2** A pair of positive integers m, n is called *guerrera*, if there exists positive integers a, b, c, d such that m = ab, n = cd and a + b = c + d. For example the pair 8, 9 is *guerrera* cause $8 = 4 \cdot 2$, $9 = 3 \cdot 3$ and 4 + 2 = 3 + 3. We paint the positive integers if the following order:

We start painting the numbers 3 and 5. If a positive integer x is not painted and a positive y is painted such that the pair x, y is guerrera, we paint x.

Find all positive integers x that can be painted.

3 Find the minimum real *x* that satisfies

 $\lfloor x \rfloor < \lfloor x^2 \rfloor < \lfloor x^3 \rfloor < \dots < \lfloor x^n \rfloor < \lfloor x^{n+1} \rfloor < \dots$

-	Day 2
4	We say a non-negative integer n "contains" another non-negative integer m , if the digits of its decimal expansion appear consecutively in the decimal expansion of n . For example, 2016 contains 2, 0, 1, 6, 20, 16, 201, and 2016. Find the largest integer n that does not contain a multiple of 7.
5	The numbers from 1 to n^2 are written in order in a grid of $n \times n$, one number in each square, in such a way that the first row contains the numbers from 1 to n from left to right; the second row

such a way that the first row contains the numbers from 1 to n from left to right; the second row contains the numbers n + 1 to 2n from left to right, and so on and so forth. An allowed move on the grid consists in choosing any two adjacent squares (i.e. two squares that share a side), and add (or subtract) the same integer to both of the numbers that appear on those squares.

Find all values of n for which it is possible to make every squares to display 0 after making any number of moves as necessary and, for those cases in which it is possible, find the minimum number of moves that are necessary to do this.

AoPS Community

6 Let ABCD a quadrilateral inscribed in a circumference, l_1 the parallel to BC through A, and l_2 the parallel to AD through B. The line DC intersects l_1 and l_2 at E and F, respectively. The perpendicular to l_1 through A intersects BC at P, and the perpendicular to l_2 through B cuts AD at Q. Let Γ_1 and Γ_2 be the circumferences that pass through the vertex of triangles ADE and BFC, respectively. Prove that Γ_1 and Γ_2 are tangent to each other if and only if DP is perpendicular to CQ.

AoPS Online 🏟 AoPS Academy 🏟 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.