AoPS Community

Mexico National Olympiad 2016

www.artofproblemsolving.com/community/c387208
by gavrilos, Math_CYCR, GovernmentCheeseAhoy, ralk912

- Day 1

1 Let C_{1} and C_{2} be two circumferences externally tangents at S such that the radius of C_{2} is the triple of the radius of C_{1}. Let a line be tangent to C_{1} at $P \neq S$ and to C_{2} at $Q \neq S$. Let T be a point on C_{2} such that $Q T$ is diameter of C_{2}. Let the angle bisector of $\angle S Q T$ meet $S T$ at R. Prove that $Q R=R T$

2 A pair of positive integers m, n is called guerrera, if there exists positive integers a, b, c, d such that $m=a b, n=c d$ and $a+b=c+d$. For example the pair 8,9 is guerrera cause $8=4 \cdot 2$, $9=3 \cdot 3$ and $4+2=3+3$. We paint the positive integers if the following order:

We start painting the numbers 3 and 5 . If a positive integer x is not painted and a positive y is painted such that the pair x, y is guerrera, we paint x.

Find all positive integers x that can be painted.
3 Find the minimum real x that satisfies

$$
\lfloor x\rfloor<\left\lfloor x^{2}\right\rfloor<\left\lfloor x^{3}\right\rfloor<\cdots<\left\lfloor x^{n}\right\rfloor<\left\lfloor x^{n+1}\right\rfloor<\cdots
$$

- Day 2

4 We say a non-negative integer n "contains" another non-negative integer m, if the digits of its decimal expansion appear consecutively in the decimal expansion of n. For example, 2016 contains $2,0,1,6,20,16,201$, and 2016. Find the largest integer n that does not contain a multiple of 7.

5 The numbers from 1 to n^{2} are written in order in a grid of $n \times n$, one number in each square, in such a way that the first row contains the numbers from 1 to n from left to right; the second row contains the numbers $n+1$ to $2 n$ from left to right, and so on and so forth. An allowed move on the grid consists in choosing any two adjacent squares (i.e. two squares that share a side), and add (or subtract) the same integer to both of the numbers that appear on those squares.

Find all values of n for which it is possible to make every squares to display 0 after making any number of moves as necessary and, for those cases in which it is possible, find the minimum number of moves that are necessary to do this.

6 Let $A B C D$ a quadrilateral inscribed in a circumference, l_{1} the parallel to $B C$ through A, and l_{2} the parallel to $A D$ through B. The line $D C$ intersects l_{1} and l_{2} at E and F, respectively. The perpendicular to l_{1} through A intersects $B C$ at P, and the perpendicular to l_{2} through B cuts $A D$ at Q. Let Γ_{1} and Γ_{2} be the circumferences that pass through the vertex of triangles $A D E$ and $B F C$, respectively. Prove that Γ_{1} and Γ_{2} are tangent to each other if and only if $D P$ is perpendicular to $C Q$.

