Art of Problem Solving

AoPS Community

National Math Olympiad (Second Round) 1989

www.artofproblemsolving.com/community/c3873
by Amir Hossein, Zeus93

Day 1

1 (a) Let n be a positive integer, prove that

$$
\sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}
$$

(b) Find a positive integer n for which

$$
\left\lfloor 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\cdots+\frac{1}{\sqrt{n}}\right\rfloor=12
$$

$2 \quad$ A sphere S with center O and radius R is given. Let P be a fixed point on this sphere. Points A, B, C move on the sphere S such that we have $\angle A P B=\angle B P C=\angle C P A=90^{\circ}$. Prove that the plane of triangle $A B C$ passes through a fixed point.

3 Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence in which $a_{1}=1$ and $a_{2}=2$ and

$$
a_{n+1}=1+a_{1} a_{2} a_{3} \cdots a_{n-1}+\left(a_{1} a_{2} a_{3} \cdots a_{n-1}\right)^{2} \quad \forall n \geq 2 .
$$

Prove that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\cdots+\frac{1}{a_{n}}\right)=2
$$

Day 2

1 In a sport competition, m teams have participated. We know that each two teams have competed exactly one time and the result is winning a team and losing the other team (i.e. there is no equal result). Prove that there exists a team x such that for each team y, either x wins y or there exists a team z for which x wins z and z wins y.
[i.e. prove that in every tournament there exists a king.]
2 Let n be a positive integer. Prove that the polynomial

$$
P(x)=\frac{x^{n}}{n!}+\frac{x^{n-1}}{(n-1)!}+\ldots+x+1
$$

Does not have any rational root.
$3 \quad$ A line d is called faithful to triangle $A B C$ if d be in plane of triangle $A B C$ and the reflections of d over the sides of $A B C$ be concurrent. Prove that for any two triangles with acute angles lying in the same plane, either there exists exactly one faithful line to both of them, or there exist infinitely faithful lines to them.

