AoPS Community

National Math Olympiad (Second Round) 1993

www.artofproblemsolving.com/community/c3877
by Peter, Vaf, Amir Hossein

Day 1

1 Suppose that p is a prime number and is greater than 3 . Prove that $7^{p}-6^{p}-1$ is divisible by 43 .
2 Let $A B C$ be an acute triangle with sides and area equal to a, b, c and S respectively. Prove or disprove that a necessary and sufficient condition for existence of a point P inside the triangle $A B C$ such that the distance between P and the vertices of $A B C$ be equal to x, y and z respectively is that there be a triangle with sides a, y, z and area S_{1}, a triangle with sides b, z, x and area S_{2} and a triangle with sides c, x, y and area S_{3} where $S_{1}+S_{2}+S_{3}=S$.

3 Let n, r be positive integers. Find the smallest positive integer m satisfying the following condition. For each partition of the set $\{1,2, \ldots, m\}$ into r subsets $A_{1}, A_{2}, \ldots, A_{r}$, there exist two numbers a and b in some $A_{i}, 1 \leq i \leq r$, such that

$$
1<\frac{a}{b}<1+\frac{1}{n} .
$$

Day 2

$1 \quad G$ is a graph with n vertices $A_{1}, A_{2}, \ldots, A_{n}$, such that for each pair of non adjacent vertices A_{i} and A_{j}, there exist another vertex A_{k} that is adjacent to both A_{i} and A_{j}.
(a) Find the minimum number of edges in such a graph.
(b) If $n=6$ and $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$, and A_{6} form a cycle of length 6 , find the number of edges that must be added to this cycle such that the above condition holds.

2 Show that if D_{1} and D_{2} are two skew lines, then there are infinitely many straight lines such that their points have equal distance from D_{1} and D_{2}.

3 Let $f(x)$ and $g(x)$ be two polynomials with real coefficients such that for infinitely many rational values of x, the fraction $\frac{f(x)}{g(x)}$ is rational. Prove that $\frac{f(x)}{g(x)}$ can be written as the ratio of two polynomials with rational coefficients.

