

AoPS Community

1993 Iran MO (2nd round)

National Math Olympiad (Second Round) 1993

www.artofproblemsolving.com/community/c3877 by Peter, Vaf, Amir Hossein

Day 1

1	Suppose that p is a prime number and is greater than 3. Prove that $7^p - 6^p - 1$ is divisible by 43.
2	Let <i>ABC</i> be an acute triangle with sides and area equal to a, b, c and <i>S</i> respectively. Prove or disprove that a necessary and sufficient condition for existence of a point <i>P</i> inside the triangle <i>ABC</i> such that the distance between <i>P</i> and the vertices of <i>ABC</i> be equal to x, y and z respectively is that there be a triangle with sides a, y, z and area S_1 , a triangle with sides b, z, x and area S_2 and a triangle with sides c, x, y and area S_3 where $S_1 + S_2 + S_3 = S$.

3 Let n, r be positive integers. Find the smallest positive integer m satisfying the following condition. For each partition of the set $\{1, 2, ..., m\}$ into r subsets $A_1, A_2, ..., A_r$, there exist two numbers a and b in some $A_i, 1 \le i \le r$, such that

$$1 < \frac{a}{b} < 1 + \frac{1}{n}.$$

Day 2

1 G is a graph with n vertices A_1, A_2, \ldots, A_n , such that for each pair of non adjacent vertices A_i and A_j , there exist another vertex A_k that is adjacent to both A_i and A_j .

(a) Find the minimum number of edges in such a graph.

(b) If n = 6 and A_1, A_2, A_3, A_4, A_5 , and A_6 form a cycle of length 6, find the number of edges that must be added to this cycle such that the above condition holds.

- 2 Show that if D_1 and D_2 are two skew lines, then there are infinitely many straight lines such that their points have equal distance from D_1 and D_2 .
- **3** Let f(x) and g(x) be two polynomials with real coefficients such that for infinitely many rational values of x, the fraction $\frac{f(x)}{g(x)}$ is rational. Prove that $\frac{f(x)}{g(x)}$ can be written as the ratio of two polynomials with rational coefficients.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.